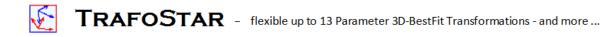


Manual

TrafoStar

Version 2.0.61 Oct, 12th 2023


Flexible over-determined 3D transformations with up to 13 parameters

3D Visualisation of deviations and error vectors

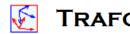


Table of contents

1 Int	roduction	4
2 Ge	etting Started	4
3 Da	ita input	4
3.1	Use of dialog "Input Files"	5
3.2	Identically Points definition	
3.3	Special OCS = Target File Formats	6
3.4	Permitted and not permitted formats of input files	7
3.5	Input Statistic	
4 Me	enu Settings	
4.1	Menu Settings - Units	.10
5 Ca	llculation	
5.1	Batch Transform	.16
5.2	Paraboloid Option (fit to rotational symmetrical shapes)	.17
5.2		
5.2		
5.2	•	
5.2		
5.2		
5.2	2.6 Tips and Tricks	. 20
5.3		
5.3		
5.3	3.2 Calculating Robot Base with R-Dist Parameter	. 23
5.3	3.3 Calculating Robot Base with R-Vector using ABC Angle Information of Robot	. 24
5.4		
5.4	Introduction Introduction	. 27
5.4	4.2 How do calculate a Monte Carlo Simulation in TrafoStar	. 28
5.4	1.3 Reasonable usage of Monte Carlo Method	. 29
5.5	Inverse Transformation Parameters	.29
5.5		
ca	lculations with separate scale parameters on any single Axis	. 30
5.6	Multiple Solutions	
6 Us	age of Windows Clipboard	. 33
7 Th	e Main Sheet	
7.1	Rectangular, cylindrical and spherical coordinate systems	
8 Th	e Graphics Window - Screen	
8.1	Print "Screen-DEFAULT" to Clipboard - CTRL + D	
8.2	More Settings with the menu Graphics	
8.3	ColorBar	
8.4	Lines	
8.5	Black Plane	
8.6	Menü Global Graphics	
	ve graphical Views	
	Flags	
	Menu Extras – Options	
	More functions	
12.1	Export of RobCad *.rf Files (See also 5.3 - Robot Base measurements)	. 43

13 Basics of overdetermined 3D Transformations	44
13.1 Rotation Matrix	44
13.2 Scale Matrix	45
13.3 Affine Matrix	45
13.4 R Dist Value	45
14 Versions	46
- massive improvement the Algorithm for "Calculating Robot Base with R-	
Vector using ABC Angle Information of Robot"	48
- Fixed Issue with opening old *.tfo Jobs	48
15 Contact	48

1 Introduction

In many ranges and situations of the 3D measurement technique and other fields of activity the task of the 3D transformation of coordinates from on coordinate system to another is necessary. This task can be mastered with simple methods of mathematics. The reversal of the task is the determination of transformation parameters from coordinates of points, which are present in two different coordinate systems (so-called identical points). If there are more points given than mathematically are necessary this leads to an over-determined Problem (BestFit calculation).

TrafoStar is an extremely flexible Tool for the determination of the transformation parameters and the remainder gaping (final corrections of each coordinate direction of each point), which results from the over determination.

Examples of the use of TrafoStar:

- ✓ Determination of the transformation parameters from robot coordinate system to vehicle coordinate system (e.g. for the production of a RobCad files)
- ✓ Analysis of 3D coordinate measurements (accuracy, error parameter, rough error tracing)
- ✓ Determination of the error parameters of stationary coordinate measuring apparatus (CMM)
- ✓ Over-determined determination of transformation parameters
- ✓ Forward transformation of new points with these transformation parameters

TrafoStar receives two data records with the coordinate information as data input: Point number, x, y and z coordinate in the form of ASCII files. Alternatively an input is directly possible over the clipboard. The following computation of the over-determined 3D transformation can take place extraordinarily flexibly:

- ✓ 1 to 13 parameter transformation
- ✓ 3 translations, 3 rotations, 3 scales, 3 affine parameters (angle x to the y axis, angle z axis to the XY plane and its azimuth) and an additional Parameter which allows a constant Distance between identically points (R_Dist)
- Each parameter can perfectly independently alternatively be set to fix or float, with the choice of fixed a fixed value can be entered for the parameter
- ✓ The weighting of each coordinate (1 or 0) can be specified over a table function, marked ranges of the table can coherently be edited
- ✓ The BestFit calculation can be done with the L1 standard (durable estimation; [|v|] >min; e.g. suitably for a rough error tracing) and L2 standard ([vv] >min; Method of the smallest squares)
- ✓ Diagram of the points in the diagram window, representation of deviations, 3D visualisation by error vectors, analysis mode
- ✓ Computation of all possible angle of rotation combinations (Euler angle, different rotation sequences, output of the rotation matrix) as well as indication of both solution types for angles of rotation

2 Getting Started

After start TrafoStar opens a empty default file. With the menu file the usual windows commands close, save, save as etc. can be done. The four last opened files can be loaded over the Menu directly.

TrafoStar stores transformation files in the internal tfo format, which is exclusively readable by TrafoStar.

3 Data input

The two data sets with the identical points can be entered via two methods: as ASCII files or directly via the Windows clipboard.

Menu: File - Input Files

Input Files	×
☐ MCS File = Measurement Coordinate System = St	tart System
	C:\Program Files (x86)\TrafoStar 2.0\TestData\290R01_gemessen.txt
Rename MCS MCS	Browse Explorer Edit from Clipboard
OCS File = Object Coordinate System = Target S	ystem C:\Program Files (x86)\TrafoStar 2.0\TestData\290R01.dat
Rename OCS OCS	Browse Explorer Edit from Clipboard
Information in OCS File	Default - [Ptnr = optional], x, y z
└── Identically Points definition	Kuka Robot file (*.dat) A = Rz, B = Ry', C = Rx'' Fanuc Robot file (*.lat) W = Rx, P = Rv', B = Rz''
 by Point ID / Point Number (default) 	only coordinates and R-Angles x, y, z, A = Rz, B = Ry', C = Rx" only coordinates and guaternions x, y, z, q1, q2, q3, q4
	Paraboloid Shape Data
C Auto Find by identically distances in MCS ar	nd OCS
Use only the first 10 P	oints of OCS for Auto Find
 identify just by coordinate comparison 	
	ated to OCS Point Names (save old file as *.\$)
	elated to MCS Point Names (save old file as ".\$)
more MCS (Start System) Points to transform into	OCS (Target System)
Prefix C Suffix	Browse Explorer Editfrom Clipboard
	Import

After installing of TrafoStar you find in the program directory (Default: c:\Programs\TrafoStar) some *. txt files as an example for the input files.

3.1 Use of dialog "Input Files"

MCS stands for <u>Measurement C</u>oordinate <u>System</u>. This system is the <u>starting</u> system for the transformation.

OCS stands for <u>Object</u> <u>Coordinate</u> <u>System</u>. This system is the <u>target</u> system for the transformation.

In the rename fields a free text can be entered. This will be hereafter always used as a substitute or an addition to the name of MCS and OCS in the program.

With the Edit button an ASCII editor (e. g. MS Notepad) is called, which shows the text files. The Application which is linked in Windows to ASCII Files will open the file.

Often the data to be transformed is available in other programs. If the data are represented in these programs in tabular form (so e. g. in Excel) and the program allows access to this data via the Windows

clipboard, then the input to TrafoStar can be done directly via the clipboard. Copy the data in the other program to the clipboard and then click in TrafoStar the button "... from Clipboard". TrafoStar now automatically generates a text file in the program directory with the name "mcx.txt" resp. "ocs.txt" and inserts the data from the clipboard into the file.

For the format of the copied data the same rules are valid as for the normal input of files (see 3.4).

3.2 Identically Points definition

The Area "Identically Points definition" gives some options for the definition of the identical points. The standard case is the identically points are defined by their names / IDs. Often there are applications without Point Names or the Point Names do not define the identical Points. The Option "Auto Find by identically distances..." ignores the Point IDs. Instead identical Distances are searched in the two datasets MCS and OCS and with this base the identical Points are found. As part of a barrier, which will be specified by the user, there are small differences allowed between the same distances.

In some cases this method fails:

- to big and inhomogeneous deviations between MCS and OCS Data
- in case of very symmetrical Data to much equal distances do not allow a good solution

- in case of lots of points the algorithm takes to much time (to reduce time it is possible to set the hook "Use only the first..."; in this case only the first n Points of the OCS Data is used, theoretical 3 Points are enough (the rest of points can be subsequent transformed and the identical points can be found by a simple coordinate comparison).

Another way for the definition of identical points is the Option "identify just by coordinate comparison". Also in this case the Point ID is ignored. All MCS and OCS Data must be in the same coordinate system in advance. The user defines a barrier value in which interval points must have the same coordinates to be found as identical points. As an option the Points in either MCS or OCS File could be renamed automatically related to the Point name of the identical Point found in the respectively File. The originally File is saved with an additional extension ".\$".

To allow a reflection and connection between the points in TrafoStar and the Input Files, TrafoStar generates for the imported Points a new Point ID as a combination from OCS and MCS IDs. The new Point ID is the MCS Name with a Prefix "MCS_"; a "=" is added and the OCS ID with the Prefix "OCS_". (Example: MCS_23=OCS_33).

By pressing "OK" TrafoStar begins with reading the data.

If already points for MCS and OCS system are inserted to TrafoStar, the area "more MCS Points to transform into OCS" is active. Here another ASCII file can be specified, in which points are available corresponding to the MCS coordinate system. These points are read into TrafoStar as points, which exist only in the MCS system. Often these Points do have the same IDs like the already imported points.

To prevent the additional points in the file must be renamed manually; there is the possibility of the option prefix / suffix. A phrase used as pre or suffix is added to each Point Name.

3.3 Special OCS = Target File Formats

Default - [Ptnr = optional], x, y z	•
Default - [Ptnr = optional], x, y z	
Kuka Robot file (*.dat) A = Rz, B = Ry', C = Rx''	
Fanuc Robot file (*.ls) W = Rx, P = Ry', R = Rz"	
only coordinates and R-Angles x, y, z, A = Rz, B = Ry', C = Rx''	
only coordinates and quaternions x, y, z, q1, q2, q3, q4	ł
Paraboloid Shape Data	

The Option "Kuka Robot file (*.dat)..." and "Fancu Robot file..." is described in 5.3.3.1 - Import ABC or Quaternion's and Coordinate Information of Robot *with File*.

The Option "only coordinates and R-Angles..." and "only coordinates and quaternions..." defines the OCS with xyz and ABC Angeles or with xyz and 4 Quaternion's Q1, Q2, Q3, Q4. (see 5.3.3.1 - Import ABC or Quaternion's and Coordinate Information of Robot with File).

By choosing "Paraboloid shape data" the OCS File is defined as nominal parabolic Data (or a rotationally symmetric body) (for details and format description see Chapter 5.2).

3.4 Permitted and not permitted formats of input files

The coordinates of the points are in two ASCII files (also called text file, a file which you can edit with e. g. MS-Notepad). For each line item it contains the Point Name (Point ID), the x, y and z coordinate. The information must be separated by one of the following characters (delimiters): TAB (), semicolon (;), space (), colon (:), asterisk (*) or hash (#). Also since Vers. 2.0.49 a commy (",") is allowed, but only if the Computer settings define a POINT "." as decimal delimiter.

The separator must be for both Files always the same. TAB as a delimiter is recommended, because the data so well in Microsoft Excel can be pasted.

	txt - Editor			
Datei Bearbeit	ten Format ?			
11	-2118.556	1790.543	939.021	
12	-2140.550	1840.102	-497.986	
13	-2135.456	1817.207	-1704.368	
14	2191.887	1900.146	979.266	
15	2454.370	1043.669	927.064	
16	2450.824	1025.816	-113.427	
17	2443.989	1004.649	-1688.241	
18	2856.458	-283.206	982.851	
19	2845.488	-276.259	-259.497	
20	2833.995	-274.326	-1660.249	
21	3079.745	-1841.139	1036.254	
22	3167.802	-1882.456	-162.609	
23	3170.382	-1898.865	-1710.811	Ī
24	3516.258	-3277.626	-349.260	^
25	3477.573	-3288.517	-1672.348	
26	1798.842	-3819.528	-794.900	

The decimal point depends on the region settings (country settings) used on the computer. It is recommended to use "." [Point] as decimal separator.

The following file is formatted incorrectly.

📕 Points.txt - Editor		
Datei Bearbeiten Format	Ansicht ?	
Punkt1;231,3365	654,336	6565,336,56
Punkt02 09824	654.36	
PunktTest 1020	30	
Point4 10,33	10,66	10,66

TrafoStar reports:

TrafoStar 🛛 🛛
To much DecimalDelimiter in Row 1. Please check and fix
()

In the first line a total of 4 commas have been found, but a maximum of three are possible and permissible. TrafoStar can not automatically make any correction; so the user must edit the text file and make a correction (a comma has to be removed).

Has this been done the following message appears after clicking OK:

TrafoStar 🛛 🛛
Found both possible DecimalDelimiters "." and "," in
J:\01_ORG\91_GES\fm user VZ\Visual Basic\Affin_Trafo\Daten\!datas strubbelig\Points.txt
Only "." OR "," are allowed!
View File and fix problem

The reason is, in the file POINTS and COMMAS are used as decimal delimiter. TrafoStar can not correct that automatically, the user has to edit the file and to do the correction manually. In this case the point at "Punkt02" must be changed to a comma.

Again after click on OK a message appears:

Country Settings; issue with . and ,		
Your Decimal Delimiter in your File		
J:\01_ORG\91_GES\fm user VZ\Visual Basic\Affin_Trafo\Daten\!datas strubbelig\Points.txt		
is different to your settings in your operating system, which is "."		
Should I change the , in your File to . ?		
[]a Nein		

In the Files COMMAS are recognized as decimal delimiter but the operation system of the computer uses a POINT for the decimal delimiter. After clicking "Ja" (Yes) TrafoStar replaces all COMMAS (,) with POINTS (.).

After this the file is imported without any more error message.

NOTICE:

The Point "PunktTest" has only two Values! TrafoStar understand these as x and y, the z Value will be set to Zero!

Another issue is if a File has no Point IDs (like the following example)

📕 Points.t	xt - Editor	
Datei Bearb	eiten Format	Ansicht ?
231.3365	654.336	6565.33656
09824	654.36	
1020	30	
10.33	10.66	10.66

TrafoStar gives the following message:

TrafoStar
File has only 3 columns; they will be interpreted as x, y, z; Point Number will be Line Number of File for MCS AND OCS File!
(OK)

TrafoStar has recognized the File has only three columns and assumes these are the x, y and z Values. So Point IDs will not be imported, instead the continuous number of the row in the file will be interpreted as Point ID.

3.5 Input Statistic

nput Statistic 🛛 🛛 🔀
MCS - MCS Filename
C:\Programme\TrafoStar 2.0\TestData\CNC Mill Act.txt
OCS - OCS Filename
C:\Programme\TrafoStar 2.0\TestData\CNC Mill Nom.txt
MCS - Points in MCS File
193
OCS - Points in OCS File
192
Identically Points (In both Files)
192
MCS only - Points only in MCS
1
OCS only - Points only in OCS
0
<u>t</u> o Input Files

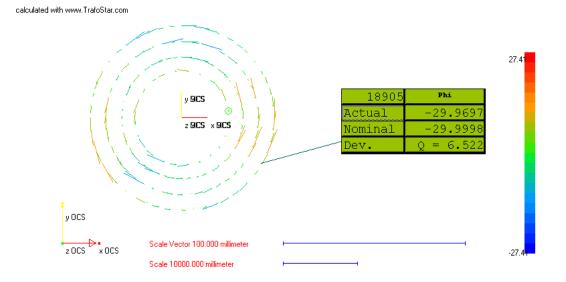
The input statistic dialog does show the number of identical points. In addition it reports the number of points that are <u>only</u> in the MCS file and the number of points that are <u>only</u> in the OCS file.

The points which are only available in the MCS file will be transformed by the calculated transformation parameters into the OCS system.

4 Menu Settings

4.1 Menu Settings - Units

In dies Menu the units for the whole program can be set. Also here it is fixed in which unit the imported Data is defined. After switching the unit during an ongoing session, it may be necessary to perform a new calculation or action, so that all the displayed values are displayed according to the new unit settings (such as in Window Transformation Calculation).


Units []	and Digits	×
	Unit []	Digits
Length	millimeter	0.000 💌
Angle	degree	0.0000 💌
	now Phi and Theta in Lengt viations; this can be called	
	<u>C</u> ancel	<u> </u>

The Option "Show Phi and Theta..." results in a conversion of all deviations (actual – nominal) of the angles Theta and Phi into a metric Unit, called the transverse deviation. For this the Formula b / r = alpha / rho is used. This means an angular deviation is no longer shown in an angle unit, instead it is shown as a distance (in the defined length unit). So for example a Point with the angular deviation of 0.015° (however Theta or Phi) that has a distance of 10.000 mm to the coordinate system (distance based on the R Value of the cylindrical coordinate system) will have a transverse deviation of:

 $\frac{b}{10000} = \frac{0.015}{180/3.1415} \implies b = 2.618 \text{ mm}$

To identify the transverse deviation as what it is, in the flags a "Q = " is written before each number.

5 Calculation

After the done import of the Point coordinates the calculation can start with the Menu Calculation – Transformation.

Transformation	Calcula	tion															X
- Calculate								t.ID	dev.x	dev.y	der a		use.v	100 7			Norm (Solution)
		Value	sigma	value/sigma		SEED	1	1	0.868	-0.159	1.054		X X	X			CL <u>1</u> €L <u>2</u>
		value	sigina	value/sigina		3660		2	-0.523	0.817	-0.041		X	X			C Loo - max to min
🔽 tra x		-25028.572	1.478	16938.0				3	0.005	0.333	-0.770		X	Х			 in Betta state
🔽 tray		-34645.961	1.647	21034.8	Г			4	-0.572	1.137	-1.261		X	Х			<u></u>
🔽 tra z		-3796.080	10.379	365.7	Г			5	-0.604	-0.716	-1.559		X	X			Standards © 6 Parameter
10 002			_	_				6	-1.138	1.176	-3.037		XX	XX			C 7 Parameter
🔽 rot x	sec	-0.049	0.005	9.1				8	-0.496	1.947	0.810		X	X			C 9 Parameter
🔽 rot y'	Rot	0.137	0.025	5.4				9	1.516	2.309	1.268		X	X			-
🔽 rot z"	Sol	0.044	0.004	12.2				10	0.780	1.244	1.211		X	X			C 12 Parameter
								11	-0.046	1.525	1.515		X	X			C Hold Level
🔲 scale x		1.000000						12	-0.355	-1.043	-0.410		X	X			Control
🖂 scale y		1.000000	- i	-				13	-0.171	-1.091	1.999		X	X			Control
□ scale z		1.000000		-	Г			14 15	1.069	-0.281 -0.556	0.479		XX	XX			<u>C</u> alculate
, 000,02								16	1.613	-0.071	0.475		X	X			
🗌 scale xyz		not used						17	-59.415	-94.967	996.606						Auto recalculate
		Show all	ternativ Rot / Affi	in Solution	1			18	-327.913	-0.035	92.407	•					Value to SEED
		011017 01			_			19	378.393	-108.764	-758.105						Value to SEED
□ ×y	sec	0.000						20	13.280	205.309	-330.035						
🔲 Azimuth a	² Aff	0.000						21	-1.463 1.379	0.328	0.422		XX	XX			MCS <=> OCS
□ z to xv	Sol	0.000	-	-				23	1.582	1.960	-3.005		X	X			MCS => OCS
·- ·		10.000	1	1				24	0.876	1.764	1.145		X	X			
R Option -								25	1.960	-0.300	0.481	. Х	X	X			
🔽 B Dist		238.825	0.729	327.6				26	1.642	0.220	1.429		X	X			Use all pts
								27	-1.704	-2.495	-0.529		X	X			Details
	vec_x	-163.113	0.555	294.1				28	-0.679	-1.399	-0.669		X	X			
ABC 🗸	vec_y	3.125	0.529	5.9				29 30	-2.000	-2.379	0.001		XX	XX			STOP
· · ·	vec_z	-174.418	0.853	204.6				30	-2.304	-4.073	-0.904		Λ	Δ			
																	MonteCarlo
E	Equation	OCS = TRA + Ro	ot_Matrix * Affine_	Matrix * Scale_N	fatrix * M0	CS											
- Statistics																	
					_												
sigma xyz	2.429	↓	sigma x	1.286	1	s	gma y	1.534	I ↓	sigma z	1.376	1					copy this Form
max dev xyz	4.913	30	T max dev	* 1.960	25	T n	ax dev y	2.309	9	max dev z	1.999	13					to clipboad
	1	1	min dev	* -2.564	30		in dev y	-4.073	30	₩ T min dev z	-3.037	6	U 🗸				
s0 Standard Deviation of				2.004					30	V			↓				
p=1 [sigma 0]	1.384	1	max-min	* 4.524	1	m	iax-min y	6.382	1	max-min z	5.036	1					Close
Iteration 30r	eady		Converge	nce Ratio: 2.836		on VarNum	ber: 2	delta x(i): 9	.9714042279723	36E-12L2		L2			millimeter	degree	11

The Window is separated into five Areas

- Calculate
- Statistics
- > Data Table
- And Control Buttons
- Status Bar

Calculate

Here the parameters for the transformation are set and shown. With the Checkboxes the parameter can be set either to fix, float or a specific user defined value.

Not used / or default value: This parameter is not used (the least square calculation does not use this parameter as an unknown parameter) The default value is 0 (Zero) for all values expect for the scales, here 1 is the default value. (Note: Parameters "xy" and "z to xy" do show the DEVIATION to the standard 90° of a rectangular coordinate System).

Float: This setting uses the parameter as an unknown in the least square best fit.

Fix: The value is set fix to the default value or to any user entered value.

Sigma shows the standard deviation fort each single parameter.

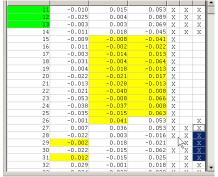
"Value / sigma" is the quotient of the parameters value and its standard deviation. This value should help to estimate the significance of the parameter. (For example: Standard deviation is greater than the parameter, Quotient is < 1)

In the seed fields you can enter approximate values for the parameters. It can be useful in special cases to generate faster calculations or a more stable solution (large number of points, bad or slow iteration, long calculation time's e. g. on Paraboloid calculations). The Button "Value to Seed" copies all Parameters of the last calculation into the seed fields. The Seed values will only be used if the checkbox is set. NOTE: A seed does NOT mean to set the parameter to fix: If you FIX a Parameter, the result of the Transformation gives exactly this value; a seed Value is just a "start value" for the calculation, the final calculated Parameter will be calculated in the least square calculation and is independent from the seed value.

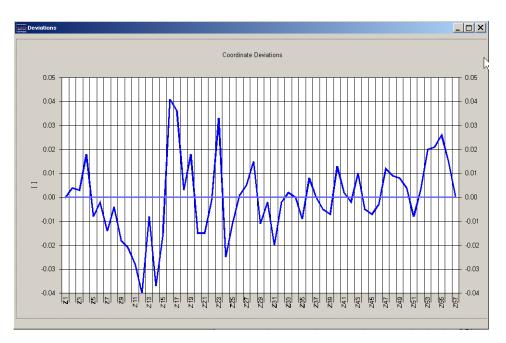
Statistics:

This Area gives a quick overview about the transformation results. It shows the standard deviation for xyz and for each coordinate direction. Also the max and min deviation for each coordinate direction and the span (max-min) is shown with the associative Point ID. A double click on the Point ID deactivates the Point-Direction in the Transformation (= unuse, means the Point Direction will not be used in the next calculation).

Also the standard deviation of the weight unit is shown (s0; this is the standard deviation of an observation with the weight = 1, a with a x marked coordinate direction of a point has the weight 1.


The red and green arrows close to the values show the change of the value relative to the last calculation. If the absolute value was getting smaller a green arrows appears, if the absolute value was getting bigger, a red arrow appears.

Data Table:


The Data Table shows for each (identical) point the Point ID and the deviations between the transformed Start System (= MCS) and the Target System (= OCS); these values are the corrections of the least square adjustment.

In the three columns use.x, use.y and use.z the usage of the point coordinates direction within the transformation is shown with a "X" (x gives the direction a weight of 1 in the calculation, "no X" gives it a 0). A double-click in the specific field changes from "X" to "no X". Also the colour in the coordinate cell changes relative to the x setting.

By highlighting an area in the use area more then one direction can be toggled between use and not use; just double-click with the RIGHT Mouse button on the highlighted area. Alternative you can hit the spacebar.

If you just click the right mouse button within a highlighted area one time a context menu appears. Now you can copy the area into the clipboard or you can create a 2D graphic of these points.

The three green marked points are used as seed points within the calculation. In the hierarchy of the seed calculation first the seeds of the parameters are used and afterwards this seed points. As a default the first three points in the table are used as seed points.

Often the Data is sorted and the first points do lie on a line or are close together; this results in more iteration and maybe in a bad solution of the transformation. So in some cases it might be useful to change the seed points. For this double-click onto the Point ID cell; this point becomes a seed point, and the oldest defined seed point will not be a seed any more.

Control Buttons:

In the control Buttons you can choose between the calculation methods L1 and L2.

L1 – Norm

The L1 Norm uses the target equation $\sum |v_i| \rightarrow \min$ (The Sum of absolute values of the corrections will be set to a minimum). This Norm in general is used to find outliers in datasets.

L2 – Norm

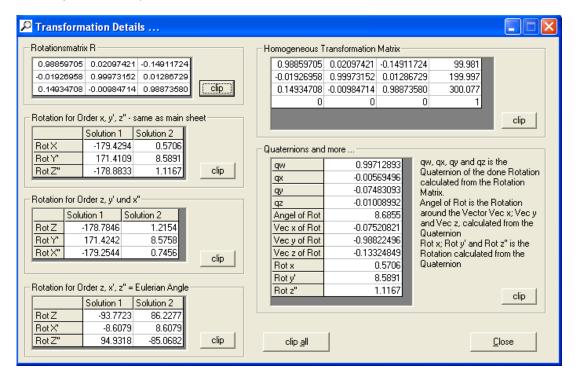
The L2 Norm uses the target equation $\sum (v_i \cdot v_i) \rightarrow \min$ (another notation is: [vv] to min (method of the least squares adjustment based on C. F. Gauß); it minimizes the square sum of the corrections.

The algorithm for the calculation of the L1 Norm is based on the iterative new weight of the observations with $p_i = \frac{1}{v_i}$, where v_i is the correction of the last calculation. Each single calculation is based on the L2 Norm

L2 Norm.

The option "Standards" delivers some standard transformation types like six or seven parameters (seventh is one global scale), nine parameters (three independent scales) or a 12 parameter transformation (3 scales and 3 affine parameters). The "Hold Level" option is a special case in land surveying and is based on the fact the z axis of the Start system is a vertical ("levelled") axis and this axis should be fixed. So only a rotation around the z axis is allowed and NOT around the x and y axis.

The calculate Button starts the calculation of the transformation with all the settings the user has done in advance.


The Button "MCS <=> OCS" toggles the direction of the transformation. After clicking this button directly a new calculation is done. The program internally changes the sets of coordinates from Start System to Target System and reverse. You do have the same effect if you manually go to input files and select the Start File as Target OCS File and the Target File as Start MCS File.

This Method is helpful if you need the correction of the Transformation in the Start coordinate system (= MCS). Also now you get the Translation Parameters in the Start coordinate System.

ATTENTION: Be careful: If you use scale parameters there might be small differences between both ways, because one time you get the Translations WITH scale, and in the other directions you get the Translations WITHOUT scale!

The Button "Use all Points" switches all Points to use = "X", this means ALL coordinates will be used for the next calculation.

The Button Details opens a new Window. Here you can find detailed information's to the rotational parameters of the Transformation. (for Details Button see also 5.5 - Inverse Transformation Parameters and 5.6 - Multiple Solutions)

- The rotational Matrix R
- The rotation for the sequence x, y' und z" (This is the same as in the main window "Transformation Calculation")
- The rotations fort he sequence z, y' und x''
- > The rotation fort he Euler-Angle, which meet the sequence z, x' und z"
- The rotation for other sequences
- Quaternion of the rotations, calculated from the rotational matrix; also the vector in space, around to turn the coordinate systems and the angle of rotation is given

For every sequence of rotation two solutions do exist. (Example: rx = 0; ry = 0 und rz = 0; second solution: rx = 180; ry = 180 und rz = 180). Both solutions are shown.

All shown values are rotations with step by step rotated axis! (for example: x, y' and z'' rotation; first rotate around x; then rotate around the NEW Axis y which is called y', then rotate around the already two times changed and NEW Axis z which is called now z'').

With the clip buttons you can copy the numbers to the windows clipboard.

Button "close" closes the Window Transformation Calculation.

"STOP" stops a running calculation. The actual iteration will be finished and the result after this iteration is shown.

If the check box "Auto recalculate" is marked a new calculation is stared after each change of the settings (example un-use a point or add / change a parameter). This is useful for analysis of data sets because every time you change something in the settings a new calculation is started immediately.

Status Bar:

In the Status Bar is shown:

- ✓ Iterations of L2 Calculation
- ✓ Actual running sub routine
- ✓ Convergence Ratio describes the convergence of the iteration process. It is the quotient from the biggest correction on a parameter in the actual calculation to the last calculation; a bigger convergence ratio describes a faster iteration
- ✓ "On Var Number" is the running number of the unknown Parameter which has the biggest change to the last iteration
- \checkmark Delta x(i) is he actual change in the var which is defined by "on var number"
- ✓ L1 Iteration is the number of iterations used in L1 calculation
- \checkmark d[v] is he change in the absolute sum v to the last L1 Iteration

5.1 Batch Transform

tch File Transform	
Based on the following options a couple of files can be transformed of The results are stored in files which names are based on the MCS Fil	with the actual calculated Parameters. leNames (suffix ''''_OUT'''' is added).
Batch Type	
 Transform all Files of a directory with the ACTUAL transformation p 	parameter values
Batch Settings	
MCS Directory = Measurement Coordinate System = Start System	c:\/muell\/TestBatch\
	C: VITUEII VI ESTBATCH V
	Explorer Browse
The OCS File (Target System) is the OCS File which is actually loaded	in this job
TCS Directory = Transformed Coordinates = Target System	
	c:\!muell\!TestBatch\
Use same as MCS Directory	Explorer Browse
 Write only the Points to File, which are only available in MCS = Start written within the file) 	System (Identically points will not be
Calcualtion Status	
Calculating on File 11 of 11 Files	
c:\!muell\!TestBatch\Kopie von File 1.txt	
	Cancel Start Batch

Batch Transform allows the subsequent Transformation of ALL files which are stored in ONE DIRECTORY. All Points in all files will be transformed with the <u>actual calculated transformation</u> <u>parameters</u> and are stored in a defined or default directory (the suffix "_out" is added to each file name).

ATTENTION: The subsequent Transformation will NEVER use the parameter R_Dist, because this parameter does NOT allow a definite solution in a forward transformation. If the actual Transformation is done with an R_Dist value, the subsequent Transformation will be done WITHOUT the R_Dist Value!

Explanation:

Forward Transformation: A Set of Points is transformed with known transformation parameters from one System (Start) into another System (Target).

Subsequent Transformation: Two sets of data do have a number of identical points. The Transformation Parameters are calculated with the identical points. All other points in the START System will be forward transformed with these parameters.

5.2 Paraboloid Option (fit to rotational symmetrical shapes)

To Orient (Best Fit) measurement Data (or other Data) to a shape of a symmetrical rotational shape you can use the Paraboloid Option in TrafoStar. Following this shapes are named Paraboloid, but this is every time a synonym for a symmetrical rotational shape.

5.2.1 Import the data

The measurement Data is imported in the InputFiles Dialog as already described.

The nominal Paraboloid Data is imported in the OCS section. For that the checkbox "Paraboloid Shape Data" has to be hooked.

The format for the parabolic data is the following. It is a polygon which lies in a cross section through the Paraboloid (Cross section parallel to the Paraboloid Axis) and crosses the centre of the Paraboloid.

📕 Refl	ektor date	en Subr	eflektor	. txt	t - Editor
Datei B	Bearbeiten	Format	Ansicht	?	
0.0000 0.0102 0.0178 0.0279 0.0356 0.0457 0.0533 0.0635 0.0635 0.0737 0.0838 0.0914	2 0.00 3 0.00 9 0.00 5 0.00 6 0.00 7 0.00 8 0.00 9 0.00 7 0.00 6 0.00 7 0.00 7 0.00 7 0.00 3 0.00	00 00 00 00 00 00 00 00 00 00			

- The first number describes the radial distance (= r, shortest distance perpendicular to the Axis) from the Rotation Axis, the second number is the height z above the xy Plane (Centre of Paraboloid has height 0)

- Format and delimiter do have the same possibilities and restrictive as defined in InputFiles

- The coordinate system of the Paraboloid is defined by its z Axis. The z Axis is positive to the open side of the Paraboloid. The z values (Height) in the File will ALWAYS be set to positive Values, even if they are negative in the File!)

- The origin of the coordinate System is the centre of the Paraboloid

- The unit of the data must be the same as the measurement data

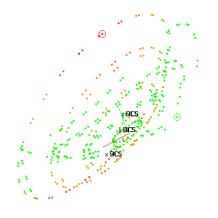

- The data <u>MUST</u> be sorted by the r value; r = 0 must bet he FIRST row in the file!

- If some Points are double in the file, TrafoStar will recognize this and eliminate these points and give a message

NOTE: In principal measurement Data can be fitted on every symmetrical rotational shape with this way in TrafoStar.

NOTE: The accuracy of the nominal data of the Paraboloid is based on the number of points and the distance between each polygon point. TrafoStar does interpolate between neighbour points, or in other words, TrafoStar makes a projection on the Paraboloid and for this between neighbour points a line is calculated and the projection is made onto this line!

NOTE: Based on the length of the r steps the accuracy of the Shape is defined. More points do give more accuracy. Between the given points TrafoStar is interpolating. The Interpolation accuracy can be estimated by taking three points of a sequence, interpolate the middle point and compare the interpolation result with the given value (Point) of the file. This calculation is made for <u>all</u> three point pairs in the file; the biggest deviation of all Point pairs is called biggest delta1 and is shown in a message box after import of the points. Typical the final interpolation accuracy is four times better than delta1 (Because the calculation of delta1 has been made with the supposition we have only half of the points). This value is shown next in the message Box. At least the average of all delta1 values is shown in the Message Box.



0

0

5.2.2 Visualization in Graphics Window

After the import of the data the MCS Points are projected onto the geometry of the Paraboloid. With the Menu "Global Graphics" – "General Graphics settings" it can be defined, to show the MCS Points and / or the OCS Points (the projected Points onto the shape are the OCS Points).

If the MCS Coordinate System is in the beginning very different to the shape coordinate system, the projection can give a strange picture before the transformation has taken place (see picture above).

5.2.3 Calculation

The calculation takes place like a normal 3D Transformation with the Menu "Transformation" – "Calculation".

It is important to define reasonable parameter settings. So the rotation around the centre axis (by definition in this program this is the z Axis) of a rotational shape is not reasonable defined.

So for the first transformation it might make sense only to set the Translation z and the rotation around x and y to float.

NOTE: It is strongly recommended that the MCS points are already in a coordinate system which is close to the Paraboloid coordinate system!

If the Paraboloid is a "flat" shape (not much height, but bigger r values) the translations in x and y are only weak defined. (Big changes in translations result in small changes of the projected distance of the MCS Points to the Paraboloid shape).

If many Points are used and the iteration and / or calculation are slow, the seed values for the parameters can help to get a faster and a more stable solution.

After you click calculate TrafoStar calculates in each Iteration:

- projection of each MCS Point onto the Paraboloid Shape
- 3D Transformation based on the MCS Points and the projected points (= OCS Points)

- Subsequent transformation of MCS Data with the transformation parameters
- New projection and so on...

This iteration is cancelled once the change in s0 of the Transformation is smaller than 0.01 μ m. It might make sense to start the Transformation again to make sure no big changes take place anymore.

After each iteration the determined parameters, the sigma xyz and the s0 are written in the window (Attention: not all Parameters are shown new after each iteration). Once the calculation is finished (or Stop has been hit) all Parameters are written completely to the window.

5.2.4 Calculation time / Seeds

With approx. 5000 Points a calculation time of < 90 sec. can be estimated (actual standard "home" computer 2012).

The calculation time can be optimized by using Seeds (Refer to Chapter 5). In specific cases it can be absolute necessary to use the Seeds to get a good solution.

5.2.5 Cancel Calculation

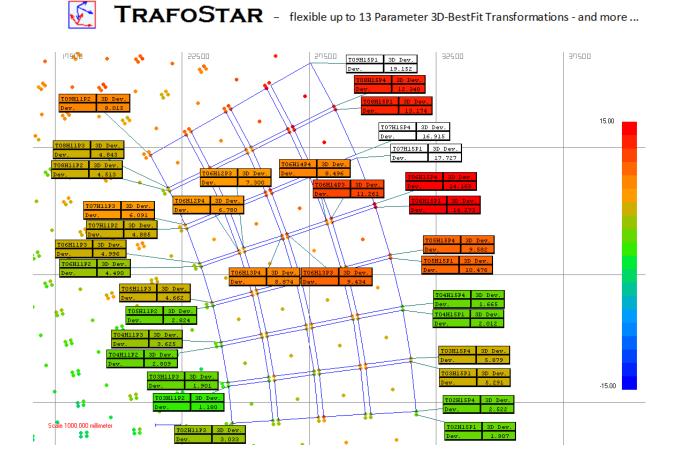
To Stop / Cancel the calculation (maybe no reasonable iteration is going on) the Button "Stop Paraboloid Trafo" can be hit. The actual iteration will be completed (can take some time) and after that the results are shown in the window.

5.2.6 Tips and Tricks

- Extras - Options "Do not copy anything to clipboard" should be turned on, to save capacity

- Use Seeds for the parameters and also set the Point seeds in the Data Table to useful points to minimize iterations

- The coordinate system of the MCS File should corresponded as good as possible (has the same effect than usage of good seed parameters)


- start with calculation of Trala z and Rot x and Rot y on flat shapes; afterwards try usage of Trala x and Trala y and be careful with this on flat shapes

- After done the calculation check if the parameters stay stable once you calculate them again (on flat shapes this is recommended to get a feeling for the stability of the solution)

Settings for the graphics

- 1) Set max min Tol with "Graphics Tolerance Color Bar"
- 2) plus minus rules based on ve.z in the same dialog => to get full bandwidth of colors
- 3) For flags use option "3D dev.", this shows the 3D deviation from the point to the shape (normal distance to shape surface)

See example picture below:

5.3 Robot Base measurements

(See also 12.1 - Export of RobCad *.rf Files)

5.3.1 Introduction

The 13th R-Dist Parameter can be used for measuring of Robot bases (and for other issues; here the usage for Robots)


The job is to define the Transformation between the Robot-Base-Coordinate System and any other Coordinate System, like the CS of the Fixture, or any other component which will be in interaction with the Robot.

To solve the Problem <u>normally</u> the Robots TCP is measured with an mobile 3D measurement System:

- Set up 3D measurement System close to Robot and Fixture
- Measure the Reference Points of the fixture with 3D System and 3D Software of the System
- Transform measurements with 3D Systems Software into CS of fixture
- Measure a Point at the Robot with the 3D System; the Points coordinates must be known in the Robots Base System (normally this is the TCP which is located in the centre of the Robots last Axis flange); so this Point is known in both coordinatesystem: a) The Coordinate System of the fixture due to the 3D measurement and b) the System of the Robot due to the Robots Base coordinates
- Make a 3D Transformation in TrafoStar with 6 Parameters (3 Translations and 3 Rotations)

Often in this Process it is a Problem to measure the TCP because a Tool is mounted to the Robot and the TCP is not accessible. Also it makes sense to measure the Robot with the Tool because due to the Tools weight this is the "real" situation from which the Transformation Parameters are needed.

The 13th R-Dist Parameter gives the possibility to measure a Point "after" the last Axis mounted anywhere at the Tool.

The advantage is: no Tool rebuilding, no need to change or calibrate the Robots TCP to the measured point; Just measure any Point an Trafo Star is calculating the unknown Vector from measured Point to TCP

5.3.2 Calculating Robot Base with R-Dist Parameter

Following Steps must be made:

- Mount Adapter / Nest / "Point" anywhere behind the last Axis of the Robot (behind means the Point must be effected of any position change of any Robot axis!); for accuracy reasons and for later stable calculation it makes sense to minimize the Distance of the Measurement Point to the TCP (try to keep smaller than 300 mm)
- Measure the Point in different Robot Positions with the 3D measurement System and write down the coordinate the Robot has been driven to; at least a minimum of 7 Points is needed; to get accurate results you must measure > 7 Points (if measuring only 7 points you wont have any over determination); it is recommended to measure 9 Points or more; it is good practice to measure the Points in the region of the fixture and also it is recommended to "change" the Robots axis during this 7 Points as much as possible (Rule: The Distance between real TCP and measured Point must be oriented in Space in different possible orientations)
- Import the coordinates to TrafoStar in OCS (Coordinates from Robot) and MCS (Coordinates from measurement System) and start the calculation dialog
- Calculate a 6 Parameter Transformation => you will get big Errors in your Points based on the non identically of the Points
- Push the button "Value to SEED" and activate the 6 check boxes for each SEED Value

rensformation Color Calculate	Acten				-	Pr. 10		Norm (Solution)	1	8
2000201	Vale	NORE	valerigra	-	SEED	60408 1 20 6140 1	dev.s dev.y dev.s use s v 55.753-32.034 4.963 2	个过 1912		
9 Ison	2624.441	26.310	100.1	P.	2828.441	60408 1 au 6840 2 60408 1 au 6840 3	-31.473 115.829 130 582 X 33.761 -0.350 106 262 X	Studards C SPeerster		816
🗭 taay	147.872	32,111	4.6	R	-147.972	604081_24_6840_4	16 SHO -65 S26 59 937 X	C 7 Palanes		13.8.51
P mag	1225.961	29.965	42.7	R	1279.561	604081_29_6140_5 604081_99_6140_6	-62.216 17 459 72.897 X -0.414 90 052-11 056 X	C 2Paraneter		159.643
With 1	2 5953	1.1438	2.3	R.	2.5568	604081_00_6840_7	-49.269 49.780 -72 481 X	C 12Pearste		191.846
Pinty Ret	-153 1085	1.5174	13.4		-158.1985	604003_su_6140_0	26.277 65.485-20.151 X	 HoldLevel 		258.172
🕼 inter 😒	52 9522	1.1956	73.1	4	92,5522			Control		167.008
C role r	1.000000		-	10	1.000000			Dalculate .		281.440
T make	1.000000		-		1.00000			Value to SEED		515,363
T make r	1.000000		-		1.100000					
E saak ge	not used	· · · · ·	-	E.				BLX on DLX		
1.	1000	-	1000	-	1000			MCS => OCS		
E armithiz	0.0000		<u></u>	-	0.0000					
T 210.64	0.0000	-		-	0.0000			Like glipts		
	le and	1	1.0	1.1	Ja 0000			Datak		
Pl Option										
PROV	ficer	662381308	5387.4	10				STOP		
D.D. Pass Inte	(.)(e)(112e)	-1						T Auto geschulde		
								Ogen		
69,49	ex OCA = TRA + P	NA MOLETRED	Notice Scale	April - P	43					
Sidates						and a second				
fination 11 _ made		Converge	nce Flatic 1.463		on Verlienbe	delta de 7.81309950774488E-11 1.2	-12			20

 Now activate the 13th Parameter R-Dist and calculate the Transformation; The Seed values do help TrafoStar to calculate the least square transformation with good start values; often the nominal values for the orientation of Robot to fixture are also good seed values and could be entered by hand

aiculate							Pt.ID				· · · · · · · · · · · · · · · · · · ·	Norm (Solution)	
iouidio						0.400	Pt.ID 1_zu_6040_1	dev.x		-0.004	use.x u X	CL1 @L2	
	Value	sigma	value/sigma		SEED		1_zu_6040_1	-0.012	0.003	0.016	X		
₹trax	2732.749	0.061	44479.1	V	2634.441		1 zu 6040 3	-0.035		-0.010	X	Stendards C 6 Parameter	
tray	-55.351	0.066	841.0	7	147.972		1_zu_6040_4	0.030	-0.001	0.019	X	C 7 Parameter	
tra z	1220.562	0.039	31279.3		1279.561		1_zu_6040_5	-0.007		-0.009	X	C 9 Parameter	
							1_zu_6040_6	-0.003	-0.005	0.000	X	C 12 Parameter	
rot x sec	-0.1324	0.0014	97.4	•	2.5960		1_zu_6040_7	0.000	0.024	0.000	X	C Hold Level	
rot y' Rot	·158.3507	0.0007	31527.0	1	-159.1005	00401	1_24_0010_0	0.017	0.024	-0.010			
rot z" Sol	90.4966	0.0016	55554.6	V	92.5522							Control	
												Calculate	
scale x	1.000000	jii		Г	1.000000								
scale y	1.000000			Г	1.000000							Value to SEED	
scale z	1.000000			Г	1.000000								
scale xyz	not used		· · · · · · · · · · · · · · · · · · ·	-	<u> </u>							MCS <=> OCS	
scale xp2	Inor used											MCS => OCS	
xy	0.0000			Г	0.0000								
Azimuth z	0.0000			Г	0.0000							1	
z to xy	0.0000				0.0000							Use gli pts	
	10.0000	- 0			10.0000							Details	
Option													
7 R Dist.	196.365	0.061	3194.7	Г								STOP	
-	1	10.001	louon.		·								
🖥 R Diata is know	/n Load R D at	3										🗖 Auto recalculate	
	and the second second	unare conse		101 - 255								Close	
Equation	on: OCS = TRA + R	ol_Matrix * Affine	_Matrix * Scale_M	atrix * M	10.S								
tistics						1							
on 39ready			ance Flatio: 0.916		on VarNumber, 2	deta xiit 8.39720053	566711E-10L2				- D.		

TrafoStar has calculated the unknown Distance between measured Point and TCP and the Rest-Deviations of the Points are close to zero.

5.3.3 Calculating Robot Base with R-Vector using ABC Angle Information of Robot

5.3.3.1 Import ABC or Quaternion's and Coordinate Information of Robot with File

A Robot can move to a coordinate in Space (x, y and z) and also can orient the flange (or mounted Tool) to a given orientation. The orientation can be defined by three angles.

TrafoStar can actually work with KUKA files called *.dat. This file stores a program for the robot movements and has a x, y and z coordinate for each Pose and also an A, B and C Angle for the orientation.

TrafoStar can also import a simple ASCII Files with Coordinates and <u>Quaternion's</u>. The format is PointID, x, y, z, Q1, Q2, Q3 and Q4, the separator can be any delimiter (see 3.4 - Permitted and not permitted formats of input files).

A, B, C are the rotation Angles relative to the Robots Base Frame, where A is rotation around z'', B is rotation around y' and C is the rotation around x. (so rotation is done in order rot x, then rot y and then rot z).

The format of the *.dat file is:

&ACCESS#RVP	
&REL#12	
&COMMENT#Einmessen#OP290	
\&PARAM#DISKPATH#=#KRC#\Rl\UPs \&PARAM#TEMPLATE#=#KC#C#\KRCKROboter\Template\upvorgabe	
\advardnmitemPLA1te#=#C#\kkk.\kodoter\TempTate\uppVorgade \&paRam#TPVw.VeRS10N#=#8.1.8	
(d/ARA/#TFVW_VEX510/#=#5.1.5 ⊗PARA/#EDTMASK#=#U0999[1-999]	
DELOYL#ND808 MAYAWAETTWAPYE=EADaaaTT-aaa1	
Der Daf in D9393 FOLD#SK1H1#30HCUKATPVW	
interface#to#basic#routines	
Ext#baS#(BaS_COMAND#IN, REAL#IN#)	
Interface#to#Wwsstandard#routines	
EXT#V/# COMMAND#IN.BOOL#IN.REAL#IN.REAL#IN.REAL#IN.BOOL#IN.BOOL#IN.BOOS#IN#)	
interface#to#WullSER#=#Call	
USER#(VW_USER_CMD#IN,INT#IN,REAL#IN,REAL#IN,REAL#IN,REAL#IN,REAL#IN,REAL#IN,BOOL#IN#)	
EXT#VW_USR_R#(VW_USER_CMD#IN,INT#IN,REAL#IN,REAL#IN,REAL#IN,REAL#IN,REAL#IN,REAL#IN,BOOL#IN#)	
EXT#IBGN#(IBGN_COMMAND#IN, BOOL#IN, REAL#IN, REAL#IN, BOOL#IN, E6POS#OUT#)	
interface#select#routine	
EXTFCT#INT#SELECT(SUBTYPE#IN.INT#IN.BOOL#IN.ARI_TYP#IN.INT#IN.BOOL_TYP#IN.INT#IN.BOOL#IN)	
INT#VW_NEXT_FREE=10	
INT#VW_NFREE_SPS=1	
INT#VW_MAX_SPS=200	
DECL#E6POS#P1={X#729.486572,Y#-790.750183,Z#1364.80896,A#-113.348396,B#-82.1011429,C#-160.4505,S#2,T#34,E1#77.1999969,E2#0.0,E3#0.0,E5#0.0,E5#0.0,E6#0.0}	
DECL#VW_MPARA_TYP#P1_D={TOOL_NO#0, BASE_NO#0, VB#100, VE#0, ACC#100, TRG_TIME#0, MOVE_TYPE#PTP_MOTION}	
DECL#E6POS#P2={X#823.786377,Y#-1435.04004,Z#1589.61304,A#-152.054398,B#-82.2793884,C#-137.686798,S#2,T#34,E1#77.1999969,E2#0.0,E3#0.0,E5#0.0,E5#0.0,E6#0.0}	
DECL#VW_MPARA_TYP#P2_D={TOOL_NO#0,BASE_NO#0,VB#100,VE#0,ACC#100,TRG_TIME#0,MOVE_TYPE#PTP_MOTION}	
DECL#E6POS#P3={X#1083.45496,Y#-1722.89099,Z#1344.77905,A#-176.464798,B#-10.4650202,C#-125.932899,S#2,T#34,E1#77.1999969,E2#0.0,E3#0.0,E4#0.0,E5#0.0,E6#0.0}	
DECL#VW_MPARA_TYP#P3_D={TOOL_NO#0,BASE_NO#0,VB#100,VE#0,ACC#100,TRG_TIME#0,MOVE_TYPE#PTP_MOTION}	
DECL#E6POS#P4={X#1125.80798,Y#-997.18689,Z#1383.51794,A#33.6663094,B#85.5066528,C#82.4670486,S#2,T#34,E1#77.1999969,E2#0.0,E3#0.0,E5#0.0,E6#0.0}	
DECL#VW_MPARA_TYP#P4_D={TOOL_NO#0,BASE_NO#0,VB#100,VE#0,ACC#100,TRG_TIME#0,MOVE_TYPE#PTP_MOTION}	
DECL#E6POS#P5={x#2044.9197, Y#-545.112122, z#1270.01599, A#30.1706409, B#57.9093208, C#75.1635208, s#2, T#34, E1#77.1999969, E2#0.0, E3#0.0, E5#0.0, E6#0.0}	
DECL#VWLMPARA_TYP#P5_D={TOOL_NO#0, BASE_NO#0, VB#100, VE#0, ACC#100, TRG_TIME#0, MOVE_TYPE#PTP_MOTION}	
DECL#E6P05#P6={x#2282.875, y#-653.638489, z#1837.245, A#64.8508072, B#-80.0066299, C#44.3221092, 5#2, T#34, E1#77.1999969, E2#0.0, E3#0.0, E4#0.0, E5#0.0, E6#0.0}	
DECL#VW_JMPARA_TYP#P6_D={TOOL_NO#0,BASE_NO#0,VB#100,VE#00,VE#00,AC#30,AC#30,MOVE_TYPE#PTP_MOTION} DECL#E6P05#P7=1x42530,66902,Y#=398,592987,z#1447.13196,A#33,5403786,B#-74,2444916,C#83.1985016,5#2.T#34,E1#77.1999969,E2#0.0,E3#0,0,E5#0.0,E5#0.0,E6#0.0}	
DecL#terov3#r/=1x#c330.03092,1#-336.39236',2#144'.13130',4#33.303',00 bm -4:2444310',0*3.1303010',5#c,1#34',E1#'/'.1393930',2c#0.0',E3#0.0',E4#0.0',E3#0.0',E0#0.0', DecL#terov3#r/=1x#c330.03092,1#-336.582 No#0.VB#100.VE#100.ACC#100.TRG TIME#0 NoVE TYPE#PTP MOTION}	
DecL##OpSysP8=4[x4#]_051[000],0000,0852[0000],0870[x6#100],0870],000[x6=0],0	
DecL#tev93#r5={\nline_10.0203}, 17200.5009, 21310.1440., 47.50.203111, 8-7.3.7.40203, (147.6.10027, 372, 173.5117, 7.1393903, 2270.0, 2570.0, 2470.0, 2570.0, 2670.0, 2670.0, 2700.0, 2	
DecL##OpSp#P=4(%#1555,23901,%#-229,341797,z#1065,47803,4#147,522598,B#1,16269004.c#-167,438293,5#2.T#34,E1#77.1999969,E2#0.0.E3#0.0.E4#0.0.E5#0.0.E6#0.0}	
Dectmyw_mrAca_iff#r9_D={100L_N0#0,0ASE_N0#0,0B#100,VE#0,ACC#100,1KG_IIME#0,M0VE_IFFE#FFF_M0T10N}	
	_

Where one Row with coordinates and angles looks like:

DECL#E6POS#P1={X#729.486572,Y#-790.750183,Z#1364.80896,A#-113.348396,B#-82.1011429,C#-160.4505,S#2,T#34,E1#77.1999969,E2#0.0,E3#0.0,E4#0.0,E5#0.0,E6#0.0}

Input Files				
MCS File = Measurement Coordinate System = S	Start System			
	C:\Program Files (x86)\TrafoStar 2.0\	TestData\290R	101_gemessen.txt 🍦
Rename MCS MCS	Browse	Egplorer	<u>E</u> dit	from Clipboard
OCS File = Object Coordinate System = Target	System			
		gram Files (x86)\Tra	foStar 2.0\Test[Data\290R01.dat ^
1				·
Rename OCS OCS	Browse	Explorer	<u>E</u> dit	from Clipboard
CCS File is a Kuka Robot f (be sure having correct UN	ile (*.dat)	🔲 OCS File c	ontains <u>P</u> araboli	oid Shape Data
(be sure having correct UN	III's selected!)			
Identically Points definition				
by Point ID / Point Number (default)				
				Cancel
C Auto Find by identically distances in MCS	Points of BCS for Au			<u></u>
C identify just by coordinate comparison				
more MCS (Start System) Points to transform inte	o OCS (Target System)			
1		e	Edit	
	Browse	Explorer	Eat	from Clipboard
1				Import

Import of the *.dat File is done by choosing it as the OCS File and setting the check mark at "OCS File is a Kuka Robot file (*.dat)...".

TrafoStar will import the coordinates and the ABC Angles.

ATTENTION: Be sure the UNIT Settings in TrafoStar do fit to the units used in the *.dat file!

ATTENTION: In the *.dat file the Points must be in the correct sequence! The Points will get a continuous Point Number beginning with 1! The Points in the MCS file can have a uncontrolled sequence, but must have the correct Point Number, which fits to the continuous Number of the *.dat file.

5.3.3.2 Calculating the Transformation using ABC Angle Information

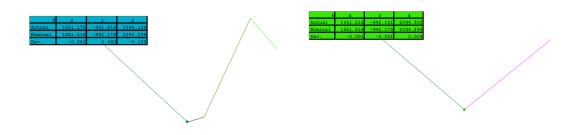
For the ABC Option you need a minimum of three measured points; in this case you will have rest deviations of 0 for each point and coordinate direction (no over determination!). It is recommended to measure at least 6 Points! It is mandatory to reorient the Robot as much as possible to give the math a good geometry for a proper result!

In the From Transformation Calculation click the "R_Dist" checkbox and then the "use ABC" checkbox. The "use ABC" checkbox is only enabled if a *.dat File has been chosen for the OCS Import.

Value sigma value/sigma SEED 1 0.377 -0.078 -0.284 X X X V tax 867.572 0.160 5410.6 Image: Constraint of the state of	alculate						Pt.ID	dev.x	dev.v	dev.z	1100 V	use.y	use.z	Norm (Solution)
v tax 967.572 0.160 5410.6 0.220 -0.366 -0.587 X X X v tay 4918.256 0.226 3623.8 0.131 0.266 -0.125 X		Value	sigma	value/sigma	SEED		1 0.12							011 el <u>2</u>
v rok 0.000 <td< td=""><td>_</td><td></td><td></td><td></td><td></td><td>_</td><td>2</td><td></td><td></td><td></td><td></td><td></td><td></td><td>C Loo - max to m</td></td<>	_					_	2							C Loo - max to m
ibit 1010.2.000 0.22.8 302.3 1 5 -0.640 -0.102 1.140 X X X S 6.803.401 C 6.803.401 C 6.803.401 C 6.803.401 C 6.803.401 C 7 -0.640 -0.102 1.140 X X X C 6.803.401 C 6.803.401 C 7 -0.640 -0.102 1.140 X X X X C 6.803.401 C 7 -0.655 -0.239 -0.481 X </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td>3</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>- In Detta state</td>						_	3							- In Detta state
v rotz 1415.217 0.304 4658.2 □ 6 0.079 -0.405 -0.349 X			_				-							Standards
¹⁰ (x) ¹⁰ (x) ¹⁰ (x) ¹⁰ (x) ¹⁰ (x) ¹⁰ (x) ¹⁰ (x) ¹⁰ (x) ¹¹ (x)	🗸 tra z	1415.217	0.304	4658.2					-0.405	-0.349				<u>6</u> Parameter
v rdy ' Ro's 0.0257 0.0133 1.9 - </td <td>✓ rot x</td> <td>-89.8318</td> <td>0.0182</td> <td>4923.4</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>C Z Parameter</td>	✓ rot x	-89.8318	0.0182	4923.4										C Z Parameter
v rot z* Sol 14.0052 0.0104 1344.1 Image: Control of Contrel of Contrel of Control of Control of Control of Contrel of Cont	sec	0.0257	0.0133	1.9										C 9 Parameter
scale x 1.000000 Control scale x 1.000000 Control scale xyz not used Control scale xyz not used Control scale xyz not used Control scale xyz 0.0000 Control Azimuth z 0.0000 Control Z to xy 0.0000 Control W 0.0000 Control R Option Control Control Walke to Control Control ABC Vec.y 1.603 0.326 V R Option Control Control Use Vec.y 1.603 0.326 Vec.y 2.298.862 0.472 633.2 Control Italiatics sigma x 0.385 max dev y 0.641 max dev z max dev z 13.11 5 max dev y 0.641 6 min dev z 0.587 Congr to Standad 0.445 5 min dev z 0.587 Congr to 0.587 Congr to		-14.0052	0.0104	1344.1			,	-0.500	0.107	0.252	Δ	A		C 12 Parameter
code y 1.00000 Control scale y 1.00000 Control scale yyz not used Control xy 0.0000 Control Azimuth z 0.0000 Control Azimuth z 0.0000 Control R Option Control Control R Dist. 299.752 0.471 636.0 Use 239.752 0.471 636.0 Control We z 239.752 0.471 636.0 Control We z 239.862 0.346 66.6 Control We z 238.862 0.472 633.2 Control Equation: CCS - TRA + Rol_Matix * Affine_Matix * Scale_Matix * MCS Control Control Italistics sigma x 0.365 max dev x Control Standad 0.641 8 max dev z 0.567 Control Standad 0.445 0.405 0.567 Control 0.567 Control		1												C Hold Level
scale y 1.00000 Image: Scale xyz Image: Scale xyz<	scale x	1.000000												- Control
a cale 2 not used Image: Comparison of the second of	scale y	1.000000												
code 8/92 Not Used w 0.0000 Azimuth z 0.0000 0.0000 0 W 0.0000 R Option 0.0000 R Option 0.0000 Weight de text 230.28 0.326 0.346 0.326 0.326 vec_z -298.862 0.472 633.2 Equation: OCS = TRA + Rot Matrix * Scale, Matrix * MCS atstics sigma x min dev x 0.665 wind ev y 0.641 Moto Service 0.597 1.140 5 wind ev y 0.642 0.405 6 0.100 1.100 0.597 2	scale z	1.000000												<u>C</u> alculate
Azimuth z 0.0000 Image: Second S	scale xuz	not used				-								🔲 Auto recalcula
Azimuth z z to xy R Option R Diate use ABC vecy ABC vecy 1.103 0.326 0.326 0.346 66.6 0.326 4.9 0.226 0.326 0.555 0 0.655 0 0.655 0 0.655 0 0.655 0 0.657 0 0.587 0 0 0.587 0 0 0.587 0 0 0 0 0 0 0 0 0 0 0 0 0	sould type	Inor abou												
z to xy 0.0000 R Option W R Dist. 299.752 0.471 636.0 Use y 0.000 0.346 66.6 0 Use y 0.2028 0.346 66.6 0 0 Use y 0.66.2 0.346 66.6 0 0 Use y 0.66.2 0.472 633.2 0 0 Equation: OCS = TRA + Rot Matix * Affine_Matrix * Scale_Matrix * MCS 1 1 0.655 0 Ratistics 1.311 5 max dev x 0.665 0 0 0 Standad 0.441 8 max dev y 0.641 8 max dev z 0.597 2 0 Standad 0.445 6 7 0.597 2 1 7 0	xy	0.0000				-								Value to SEED
B Option	Azimuth z	0.0000				-								
H Uption V R Dist. 299.752 0.471 636.0 V aBC vec.y - 1.603 0.326 65.6 Equation: OCS = TRA + Rol_Matrix * Scale_Matrix * MCS Equation: OCS = TRA + Rol_Matrix * Scale_Matrix * MCS Equation: OCS = TRA + Rol_Matrix * Scale_Matrix * MCS Equation: OCS = TRA + Rol_Matrix * Scale_Matrix * MCS Equation: OCS = TRA + Rol_Matrix * Scale_Matrix * MCS Equation: OCS = TRA + Rol_Matrix * Scale_Matrix * MCS Equation: OCS = TRA + Rol_Matrix * Scale_Matrix * MCS Equation: OCS = TRA + Rol_Matrix * Scale_Matrix * MCS Equation: OCS = TRA + Rol_Matrix * Scale_Matrix * MCS Equation: OCS = TRA + Rol_Matrix * Scale_Matrix * MCS Equation: OCS = TRA + Rol_Matrix * Scale_Matrix * MCS Equation: OCS = TRA + Rol_Matrix * Scale_Matrix * MCS = 0.821 • sigma x ax dev xyz 1.311 • 5 • max dev x 0.641 8 • max dev z 0.641 8 • max dev z 0.587 • 2 • min dev z	z to xy	0.0000		- ii		-								MCS <=> OCS
R Dist. 289.752 0.471 636.0 Image: State of the state of	P. Option			,	,									MCS => OCS
Use 23.028 0.316 66.6 Image: State of the st						_								
use -23 0.28 0.346 66.6	🕶 R Dist.	299.752	0.471											Use <u>a</u> ll pts
ABL vec_y -1.603 0.325 4.9 I vec_z -298.862 0.472 633.2 I I Equation: OCS = TRA + RoL_Matrix * Affine Matrix * Scale_Matrix * MCS talistics ard ev xyz 0.821 1 1 5 1 max dev y 0.641 8 max dev z 1.140 5 1 copy to Distandad weight of 0.465 0.405 6 min dev y 0.661 8 max dev z 1.140 5 1 copy to	use	-23.028												
Equation: CCS = TRA + RoL Matrix * Mine_Matrix * Scale_Matrix * MCS Equation: CCS = TRA + RoL Matrix * Scale_Matrix * MCS Italistics sigma x 0.365 sigma y 0.333 sigma z 0.655 I copy to ax dev xyz 1.311 5 max dev x 0.641 8 max dev z 1.140 5 1 copy to 1) Standard min dev x 0.640 5 I min dev z 0.587 2 1 7	* ABC vec_y	-1.603	0.326	4.9										<u>D</u> etails
Equation: OCS = TRA + Rot_Matrix * Affine_Matrix * Scale_Matrix * MCS Italistics gma xyz 1.311 5 min dev x 0.665 min dev x 0.641 8 min dev x 0.641 6 min dev x 0.641 6 min dev y 0.441 8 min dev y 0.441 9 0.445 9 0.445 9 9 104 104	vec_z	-298.862	0.472	633.2										STOP
taitslics max kyz 0.821 sigma x 0.365 sigma y 0.333 sigma z 0.655 copy to ax dev xyz 1.311 5 max dev z 0.441 8 max dev z 1.140 5 1 Standard min dev x 0.640 5 min dev z 0.605 1 1 2 1 Standard min dev z 0.641 6 min dev z 0.587 2 1 </td <td></td>														
gma xyz 0.821 1 sigma x 0.365 sigma y 0.333 sigma z 0.655 copy to ax dev xyz 1.311 5 max dev x 0.441 8 max dev y 0.641 8 max dev z 1.140 5 1 Standard min dev x 0.640 5 min dev y 0.645 6 min dev z 0.587 2 1		n: OCS = TRA + R	lot_Matrix * Affine	_Matrix * Scale_M	atrix * MCS									MonteCarlo
Standard min dev x 0.441 8 max dev y 0.641 8 max dev z 1.140 5 1 1)Standard min dev x 0.640 5 min dev y 0.641 8 min dev z 1.140 5 1 <	atistics													
ax dev xyz 1.311 5 max dev x 0.441 8 max dev y 0.641 8 max dev z 1.140 5 1 0 Standard wildow of the water of the wat	ma xyz 0.82	1	sigma x	0.365	$\overline{\uparrow}$	sigma y	0.333	1	sigma z	0.655	T			copy to clipboar
D Standard min dev x -0.640 5 i min dev y -0.405 6 min dev z -0.587 2 mexmin x 1.001 mexmin x 1.	ax dev xyz 1.31	1 5	max dev	× 0.441	8 1	max dev y	0.641	8 1	max dev z					copy to clipboad
	J	1	min dev	* -0.640		min dev v	-0.405		min dev z	-0.587	2			
1 faires (1) 0.433 1 (1.061 1	eviation of			0.040	_ ↓	-		_ × 🔟			_			
		ບ 📊	0.98100	1.081	T	mus mitty	1.040	T	muo miri 4	1.726	T .			~
	[sigma 0] 0.43			, ,										Close

Once the checkbox is marked you can go ahead by calculating the Transformation with Button Calculate. In this case the R_Dist value is calculated by:

$$R_Dist = \sqrt{vec_x^2 + vec_y^2 + vec_z^2}$$


So R_Dist is not a result of the BestFit Calculation, it is afterwards calculated from the BestFit results for vec_x, vec_y and vec_z.

5.3.3.3 Using the Graphics with R_Dist Options

TrafoStar can show R_Dist and vec_x etc. information in the Graphics Window. Go to Menu "Global Graphics" - "General Graphics Settings" and choose Option: "Show R_Dist Vectors or the Vectors rvec_x, rvec_y and rvec_z".

Gr	aphics Options			
Г	Visible Points in Graphics		more Settings	
	View all OCS Identically Points		F Show closer Points bigger	
	View all MCS Identically Points		🔽 Show ColorBar in Graphics Window	
	View all only OCS Points		🗇 Show Vectors as thick as Points	
	View all only MCS Points		Show Quaternion Vector	
	View Identically Points which are used in Trafo		Show R_Dist Vectors or the Vectors rvec_x, rvec_y and rvec_z	
	View Identically Points which are NOT used in Trafo	1		
	dont View Points which are out of Tol.		Labels	
			Show CoordinateSystem Labels Label Font	
			Show Point Names on visible Points	
	Deviation Vector Direction			
	Solution = actual · nominal			
	C based on correction = nominal - actual			
	Style of Points			
	□ square			
	Circle		Auto Apply Cancel Apply	

TrafoStar draws now the Vectors of vec_x, vec_y and vec_z from the real Robots TCP (=OCS to the Position where the measurement has been taken (see following picture left). If transformation has only been calculated with the single R_Dist value the Graphics Window shows the Distance beetween TCP (=OCS) and the real measured position (see picture right).

5.4 Monte Carlo Calculations

5.4.1 Introduction

Based on the least squares calculation TrafoStar can calculate the standard deviations of the Transformation Parameters. The standard deviations are calculated from the factor of value s0 and the corresponding Element in the Cofactor-Matrix (which is A^TPA⁻-1).

$$\begin{bmatrix} s_1^2 & s_{12} & s_{1i} \\ s_{21} & s_2^2 & s_{2i} \\ s_{31} & s_{32} & s_i^2 \end{bmatrix} = s_0^2 \cdot (A^T P A)^{-1}$$
 wherein s_i is the standard deviation of the parameter i.

This value is based on how the MCS coordinates do fit to the OCS coordinates, so inaccuracy of the MCS and OCS coordinates effect these values.

Sometimes it is interesting to know how variation (inaccuracy) in the MCS coordintes does influence the Transformation Parameters. A method to calculate this is the so called Monte Carlo Method.

5.4.2 How do calculate a Monte Carlo Simulation in TrafoStar

TrafoStar changes the MCS values by a defined variation (standard deviation of the MCS coordinates) and does a Number of calculations which each changed dataset of MCS coordinates. All the calculated parameters do show also a variation and the standard deviation of this variation is calculated and shown in the Window Transformation Details.

Clipboard Settings Monte Carlo Settings mo	ore Settings
Monte Carlo Settings	
Standard Deviation for MCS x Coordinates	0.1
Standard Deviation for MCS y Coordinates	0.1
Standard Deviation for MCS z Coordinates	0.1
Monte Carlo runs	20
	<u>C</u> ancel <u>D</u> K

With the menu "Extras – Options"; Tab "Monte Carlo Settings" you get access to the needed Settings.

Here you can enter the desired values for the standard deviations of MCS x, y and z values. Also you can define how many separate calculations TrafoStar does for the Monte Carlo Calculation. A higher Number will cause longer calculation time! Sometimes in literature it is written for Monte Carlo calculations a minimum of ex. 100.000 calculations must be done. This might be correct and necessary for very accurate results; but in general it would be OK to make a number of 100 calculations to get useable results.

Once you are in the Transformation Calculation Dialog there is a check mark called "Monte Carlo" within the control area. Check this Button to activate the Monte Carlo Option. Next you click "calculate" to start the calculation. TrafoStar is shows a Progress Bar and shows the status of the calculation.

Once the calculation is done the Window "Transformation Details" is opened and shows the results in the right area of the Window. The used Parameters of the Transformations are in **bold** face.

otation for Order x, y', z" - same as main sheet	Homogeneous Transformation Matrix		_ Inverse Tran	sformation Par	ameters					
Solution 1 Solution 2	0.77200032 0.60439524 -0.19677878 -7.132	2		Solution 1	Solution 2	California	Solution 4	Calation E	Solution 6	10.
Rot X -167.0000 13.0000	-0.50134288 0.76930424 0.39601301 18.138	}		-5.065		-5.065	-5.065			
Rot Y' 157.0000 23.0000	0.39073113 -0.20706853 0.89691237 46.451		tra x	-0.020		-0.020	-0.020			_
Rot Z" -147.0000 33.0000 clip	0 0 0 1	clip	tra y	-38.653	-38.653	-0.020	-0.020			
1012 -147.0000 33.0000 Clip	•	1	tra z rot x	158.9753		-21.0247	-21.0247			
		4	rot y'	-8.9961	-8.9961	-171.0039	-171.0039		-21.0247	
otation for Order z, y' and x"	Rotationsmatrix B		rot z"	-31,7878	-31,7878	148,2122	148.2122			
Solution 1 Solution 2	0.77200032 0.60439524 -0.19677878		scale x	0.968033		0.968033	0.968033			
Rot Z -141.9428 38.0572	-0.50134288 0.76930424 0.39601301		scale v	0.829907	0.829907	0.829907	0.829907			
Rot Y" 168.6513 11.3487	0.39073113 -0.20706853 0.89691237 Clip		scale z	0.816814	0.816814	0.816814	0.816814			
Rot X" -156.1771 23.8229 clip	0.33073113 0.20700033 0.03031237		XV	-174.8053	-174.8053	-174.8053	-174.8053			
Cip			Azimuth z	-151,4681	28,5319	-151.4681	28.5319			
			z to xv	-168,7804	168,7804	-168,7804	168.7804			
otation for Order z, x' and y"	Affine Matrix		2.00 Ay	-100.7004	100.7004	100.7004	100.7004	11.2130	-11.2130	
Solution 1 Solution 2	1.00000000 -0.07692927 -0.03008462									
Rot Z -146.9084 33.0916	0.00000000 0.99703655 0.00000000		•							-
Rot X" -167.6256 12.3744	0.00000000 0.0000000 0.99954736 clip									•
Rot Y" 156.6708 23.3292 clip									clip	0
										_
otation for Order z, x', z" = Eulerian Angle	Scale Matrix		In station with a	and the start						
Solution 1 Solution 2	1.00000000 0.00000000 0.00000000			nteCarlo - sigm	·	·				
Bot Z -117.9214 62.0786	0.00000000 1.20356670 0.00000000		Tra x		0.080					
Rot X" -26.2449 26.2449	0.00000000 0.0000000 1.30058871 clip		Tra y		0.089					
Rot Z" 153.5772 -26.4228 clip			Tra z		0.096					
			Rot x		0.1047					
			Rot y		0.1184					
Quaternions and more] []		Rot z		0.1123					
gw, gx, gy and gz is the gw 0.927	2143		Rot z Scale x	0.0	0.1123					
qw, qx, qv and qz is the qw 0.927 Quaternion of the done			Rot z Scale x Scale y	0.0	0.1123 000000 001932					
w, qx, qv and qz is the Quaternion of the done Rotation calculated	2204		Rot z Scale x Scale y Scale z	0.0	0.1123 000000 001932 001435					
qw, qx, qy and qz is the Quaternion of the done Rotation calculated qw 0.927 qx -0.162 rom the Rotation qy -0.158	2204		Rot z Scale x Scale y Scale z Scale xyz		0.1123 000000 001932 001435 000000					
qw, qw, qw, qw, qu and qz is the Quatermion of the done Rotation calculated from the Rotation qw 0.927' qx -0.162' qx -0.162' from the Rotation qy -0.158' qx -0.168' qy Matrix. qz -0.258' Angel of Rot is the Annel of Rot 44	2204		Rot z Scale x Scale y Scale z Scale xyz XY	0.0	0.1123 000000 001932 001435 000000 0.1093					
gw, qw, qw, qw, qw, qw, qw, qw, qw, and qz is the gw 0.927 Qualerrison of the done gx -0.152 Rotation calculated gw -0.152 Toration calculated gw -0.152 Matrix gz -0.238 Angel of Rot is the Angel of Rot is the Angel of Rot is the	2204 2312 6431 0191		Rot z Scale x Scale y Scale z Scale xyz XY Azimuth	0.0	0.1123 000000 001932 001435 000000 0.1093 6.5221					
qw, qx, qy and qz is the qw 0.927 Quaternion of the done qx -0.1621 foration calculated qy -0.1621 foration calculated qy -0.1580 Matrix. qz -0.2927 Angel of Rot is the Angel of Rot 44 Rotator around the PotVec .x -0.433	2204 2312 6431 0191 3540		Rot z Scale x Scale y Scale z Scale xyz XY Azimuth ZtoXY	0.0	0.1123 000000 001932 001435 000000 0.1093 6.5221 1.8114					
gw,	2204 2312 6431 0191 8540 3113		Rot z Scale x Scale y Scale z Scale xyz XY Azimuth ZtoXY R_Dist	0.0	0.1123 000000 001932 001435 000000 0.1093 6.5221 1.8114 0.000					
gw, qx, qy and qz is the gw 0.927 Quaternion of the done gx 0.162 Rotation calculated gw 0.158 foration calculated gw 0.158 Matix gz 0.239 Angel of Rot is the Angel of Rot 44 Rotation calculated gw 0.158 Matix gz 0.239 Angel of Rot is the Angel of Rot 44 Rotation around the RotVec x 0.433 Vector Vec x; Vec y and Vec z, colculated RotVec y 0.422 Rot Vec x; Rot y and Vec z, actuated RotVec z 0.755 131	2204 2312 6431 0191 8540 3113		Rot z Scale x Scale y Scale y Scale xyz Xy Azimuth ZtoXY R_Dist vec_x	0.0	0.1123 000000 001932 001435 000000 0.1093 6.5221 1.8114 0.000 0.000					
qw, qx, qy and qz is the Quaternion of the done Rotation calculated from the Rotation qw 0.927 Quaternion of the done from the Rotation qu 0.152 Rotation calculated Angel of Rot is the Rotation acount the Vector Vec x; Vec y and Vec z, calculated Rot x; cut y and Rot z" qu 0.152 Rot Xe z, calculated Rot Xe z, calculated Rot Xe z, calculated Rot x; the Rotation Rot Xe z 0.0238 Rot Xe z, calculated Rot Xe z, calculated Rot x; the Rotation Rot x 132	2204 2312 6431 0191 3540 9113 1200		Rot z Scale x Scale y Scale z Scale xyz XY Azimuth ZtoXY R_Dist Vec_x vec_y	0.0	0.1123 000000 001932 001435 000000 0.1093 6.5221 1.8114 0.000 0.000 0.000					
gw, gw, gw and gz is the gw 0.927 Duatemion of the done foration calculated gw 0.162 dwater 0.162 gw 0.162 dwater dwater 0.162 gw 0.162 Markin gg 0.162 0.162 gw 0.162 Markin gg 0.162 0.296 0.296 0.296 0.402 0.4	2204 2312 6431 0191 9540 3113 1200 0000		Rot z Scale x Scale y Scale y Scale xyz Xy Azimuth ZtoXY R_Dist vec_x	0.0	0.1123 000000 001932 001435 000000 0.1093 6.5221 1.8114 0.000 0.000					
gw, gw, gw and gz is the gw 0.927 Duatemion of the done foration calculated gw 0.162 dwater 0.162 gw 0.162 dwater dwater 0.162 gw 0.162 Markin gg 0.162 0.162 gw 0.162 Markin gg 0.162 0.296 0.296 0.296 0.402 0.4	2204 2312 6431 0191 13540 3113 1200 0000 0000		Rot z Scale y Scale y Scale z Scale xyz XY Azimuth Ztavty R_Dist vec_x vec_y vec_z		0.1123 000000 001932 001435 000000 0.1093 6.5221 1.8114 0.000 0.000 0.000 0.000					
$\begin{array}{c} qw, qx, qy and qz is the Quatermion of the done Rotation calculated qx 0.152 qx 0.0159 qy 0.0159 $	2204 2312 6431 0191 3540 9113 11200 0000 0000		Rot z Scale x Scale y Scale z Scale xyz XY Azimuth ZtoXY R_Dist Vec_x vec_y		0.1123 000000 001932 001435 000000 0.1093 6.5221 1.8114 0.000 0.000 0.000					
$\begin{array}{c} qw, qx, qy and qz is the Quaternion of the done Rotation calculated rom the Rotation Matrix Angel of Rot is the Rotation around the Vector Vie x: V vie Vector Vie x: V vie RotVie z: Angel of Rot is the Rotation around the Vector Vie x: V vie RotVie z: RotVie z: RotVie z: RotVie z: RotVie z: Rot x: Rot x: Rot y: R$	2204 2312 6431 0191 13540 3113 1200 0000 0000		Rot z Scale y Scale y Scale z Scale xyz XY Azimuth Ztavty R_Dist vec_x vec_y vec_z		0.1123 000000 001932 001435 000000 0.1093 6.5221 1.8114 0.000 0.000 0.000 0.000					

5.4.3 Reasonable usage of Monte Carlo Method

Specially within Paraboloid Transformations (see chapter 5.2) the standard deviations of the Parameters do not show the real situation, because they are only calculated from the fitting of the points to the shape.

5.5 Inverse Transformation Parameters

[Form Transformation Calculation, Button Details, information in Top right Frame]

The inverse Transformation Parameters are defined as the parameters which transform a point from the target system (OCS) back to the start system (MCS) based on the general Transformation equation.

In Matrix Notation this is: (NOTE: OCS is the Target System and MCS the Start System)

OCS = TRA + Rot_Matrix * Affine_Matrix * Scale_Matrix * MCS

or $\Sigma = \underline{T} + \underline{R} \cdot \underline{A} \cdot \underline{s} \cdot \Sigma \qquad \text{Formula 1}$

Where is:

$$\begin{split} \boldsymbol{\Sigma} &= \text{Coordinates in Start system MCS} [x, y, z]^\top \\ \boldsymbol{\Sigma} &= \text{Coordinates in Target system OCS} [x', y', z']^\top \\ \boldsymbol{\underline{T}} &= \text{Translation Matrix} [tx, ty, tz]^\top \end{split}$$

 \underline{R} = Rotation Matrix from Rx, Ry' and Rz'' (see 13.1 - Rotation Matrix) \underline{A} = Affine Matrix (see 13.3 - Affine Matrix) \underline{s} = Scale Matrix (see 13.2 - Scale Matrix

Formula 1 can be converted to:

$$\boldsymbol{\Sigma} = \underline{\boldsymbol{s}}^{-1} \cdot \underline{\boldsymbol{A}}^{-1} \cdot \underline{\boldsymbol{R}}^{-1} \cdot \left(\boldsymbol{\Sigma} - \underline{\boldsymbol{T}}\right) \qquad \text{Formula 2}$$

and next step into:

 $\Sigma = - \underline{s}^{-1} \cdot \underline{A}^{-1} \cdot \underline{R}^{-1} \cdot \underline{T} + \underline{s}^{-1} \cdot \underline{A}^{-1} \cdot \underline{R}^{-1} \cdot \Sigma'$ Formula 3

The inverse Translation T´ can easily be calculated by $\underline{T}' = - \underline{s}^{-1} \cdot \underline{A}^{-1} \cdot \underline{R}^{-1} \cdot \underline{T}$.

(T' is the translation to transform a Point form Target System (OCS = Σ ') to Start System (MCS = Σ); by definition the Translation Vector is parallel to the final System which is MCS in this case, so the inverse Translation Vector T' is parallel to the MCS = Start System.)

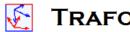
The inverse Parameters for Scale (s'), Rotation (R') and Affine Parameters (A') must be found from the equation $s^{-1} \cdot A^{-1} \cdot R^{-1} = R' \cdot A' \cdot s'$. TrafoStar is doing this calculations.

The inverse Transformation Parameters are identically with the Parameters you get if you SWAP the Transformation direction manually (make Target Points to Start Points and make Start Points to Target Points). You have this effect directly in TrafoStar by clicking the button " $\underline{M}CS \iff OCS$ ").

5.5.1 Specialities on Transformations and inverse Parameters by doing calculations with separate scale parameters on any single Axis

There is a special thing on transformations with scale parameters used on single axis like scale x, scale y and / or scale z.

For example on a 9 Parameter Transformation (3 translations, 3 rotations and 3 scales) with following Points


MCS

1	1.000000	2.000000	3.000000
2	4.000000	8.000000	99.000000
3	33.000000	45.000000	-33.000000
4	23.000000	44.000000	-6.000000
5	-66.000000	77.000000	8.000000

OCS

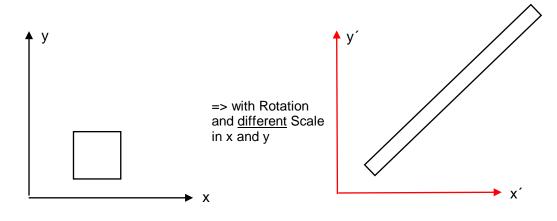
1	-8.467688	22.839304	48.430798
2	-26.126433	76.146287	160.163982
3	59.102764	26.354724	9.524298
4	42.978551	44.846388	36.956362
5	-12.247603	131.599740	6.827676

=> You get zero rest-deviation in all Points.

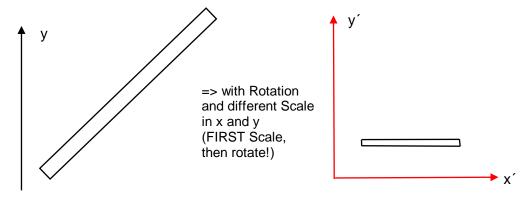
If you manually transverse the calculation by taking the OCS Points as MCS Points and the MCS Points as OCS Points and do again a 9 Parameter Transformation you get the following deviations:

1	2.268	-0.896	-1.499
2	-3.011	0.997	1.959
3	-0.975	0.510	-1.901
4	-1.437	0.630	-0.828
5	3.156	-1.241	2.270

So in one Transformation Direction you have a perfect fit and in the other direction your get big deviations.


How is that possible?

Based on the TrafoStars fundamental Transformation formula


OCS = TRA + Rot_Matrix * Affine_Matrix * Scale_Matrix * MCS

TrafoStar is transforming points from the Start System to the Target System.

An Example with Scales: First transform MCS to OCS (with Rotation in z and two different and large scales in x and y)

Transformation for the inverse Parameters (OCS back to MCS; but OCS Points are now defined as Start Points and MCS as Target Points):

It is <u>not possible</u> to get the rectangle back to a square with scales which are not parallel to the sides of the rectangle (Note: The Order of Rotation and Scale is importand, based on the fundamental Transformatin Equation scale is done FIRST, then SECOND rotation)

This can also be shown based on matrix calculations (Translations and Affine Parameters are not relevant for this problem):

$$\Sigma = \underline{R} \cdot \underline{s} \cdot \Sigma$$
 and $\Sigma = \underline{s}^{-1} \cdot \underline{R}^{-1} \cdot \Sigma'$

and for Σ we are looking for a formula in Type of $\underline{R} \cdot \underline{s} \cdot \Sigma'$

So the job is to find the matrices R'and s' for R' \cdot s' equals the result of s⁻¹ \cdot R⁻¹.

→ x

As R[´] is a rotation Matrix it has to be a orthogonal Matrix and s[´] must have the structure of a scale Matrix (which is a Diagonal Matrix see 13.2 - Scale Matrix).

The result of $s^{-1} \cdot R^{-1}$ is a Matrix, and this Matrix has to be converted into a orthogonal Matrix (= R[']) and a Scale Matrix (= s[']) what is not possible. Well known is a conversion of a matrix <u>A</u> to <u>Q</u> \cdot <u>R</u>, where Q is a orthogonal Matrix and R is a upper triangular Matrix (Iwasawa Partition).

This shows the inverse Transformation Parameters do not exist if there are multiple scales, but because the Affine Matrix is a upper triangle Matrix there is a solution for the inverse Parameters if affine parameters are used. Also for the given Example above the deviations go to zero on every Point if a 12 Parameter Transformation is calculated with Start = OCS and MCS = Target.

5.6 Multiple Solutions

The rotation between two coordinate Systems has two possible ways, for example for a x, y'and z'' order one solution could be $0^{\circ}, 0^{\circ}, 0^{\circ}$ and the other $180^{\circ}, 180^{\circ}, 180^{\circ}$.

If you make a transformation with rotations AND affine Parameters you could have EIGHT equal solutions.

The reason is the affine solution its own has two solutions (for example: xy, ztoxy and azimuth: 5° , 5° , 5° and the other 5° , -5° , $185^{\circ} =>$ if you calculate the affine matrix with both sets you get the same matrix.

The combination of rotation and affine parameters gives one more general solution for rotation with the second rotation solution and also one more general solution for the affine solution.

For example the Rotation 1°, 2°, 3° and the affine Parameters 4°, 5° and 6° do have the following equal solutions:

	Solution 1	Solution 2	Solution 3	Solution 4	Solution 5	Solution 6	Solution 7	Solution 8
tra x	0	0	0	0	0	0	0	0
tra y	0	0	0	0	0	0	0	0
tra z	0	0	0	0	0	0	0	0
rot x	-179	-179	1	1	1	1	-179	-179
rot y'	178	178	2	2	178	178	2	2
rot z"	-177	-177	3	3	-177	-177	3	3
scale x	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000
scale y	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000

scale z	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000
ху	4	4	4	4	176	176	176	176
Azimuth z	-175	5	-175	5	-5	175	-5	175
z to xy	-6	6	-6	6	174	-174	174	-174

Within the Form Transformation Calculation you can toggle between this solutions by clicking three buttons:

"sec Rot Sol" toggles between the two Rotation solutions "sec Aff Sol" toggles between the two Affine solutions

"Show alternative Rot / Affine Solution" gives the general second solution, now the two other buttons toggle between the "local" rotation and Affine solutions.

6 Usage of Windows Clipboard

(see also Chapter 8.1 - Print "Screen-DEFAULT" to Clipboard - CTRL + D) (see also Chapter 11 – Menu Extras – Options)

In the Menu Extras – Options the clipboard settings can be made.

For bigger number of points it is recommended to use the setting "Do not copy anything to clipboard" because it needs some time to copy everything to the clipboard.

Options 💽
Clipboard Settings Monte Carlo Settings more Settings
Auto Clipboard Settings C Do not copy anything to clipboard C Complete results to clipboard after each calculation
<u>Robot measurement protocol results after each calculation</u> <u>BMW Cell Calibration Component Parameters</u> <u>F</u> give inverted Parameters to <u>Clipboard (SWAP Trato direction)</u> <u>C</u> Kuka Robot Parameter X, Y, Z, A, B, C
MAIN Sheet Clipboard Settings
<u>C</u> ancel <u>QK</u>

The setting "Complete results to clipboard after each calculation" copies the results to the Windows Clipboard automatically. From here you can copy the Data to other applications.

In the picture below the content of the clipboard is shown.

The first 12 rows contain the transformation parameters. If a parameter is not used in the transformation here the neutral value of the parameter is shown (e.g. 1 for a scale).

After this the statistical values are shown.

The following rows contain the identical Points (Point ID, MCS x, MCS y, MCS z, OCS x, OCS y, OCS z, dev.x, dev.y, dev.z).

Tra x		2672.34	14								
Tra v		2653.1									
Tra z		1776.64	16								
Rotx	179.954										
Roty	179.803										
Rotz	16.9462										
Scale x		1.0000	00								
Scale y		1.00000									
Scale ź		1.0000									
xy	0.0000										
Azimuth		0.0000									
ZtoXY		0.0000									
s0	0.024										
5X	0.020	max x	0.048	min x	-0.053	max x -	min x	0.101			
sy	0.016	max y	0.041	min y	-0.040	max y -	min y	0.081			
sy sz 11 12	0.034	max z	0.089	min ź	-0.064	max ź –	min ź	0.153			
11	4180.30	0		2709.822	4180.31	0	322.581	2709.769	-0.010	0.015	0.053
12	4181.85	5	269.125	1272.788	4181.88	0	269.121	1272.699	-0.025	0.004	0.089
13	4179.42	4	292.802	66.412 4179.42		292.799		-0.003 0.003	0.069		
14	25.240	1474.1	L4	2764.917	25.251	1474.096	6	2764.962	-0.011	0.018	-0.045
15	23.611	2369.93	21	2712.936	23.620	2369.929)	2712.977	-0.009	-0.008	-0.041
16	28.558	2386.23		1672.425		2386.218		1672.447	0.011	-0.002	-0.022
17	25 740	2404 8	- 2	07 ER1 RE 7/E	2404 86	۵	07 E68	_0_0030_014	0 013		

"BMW Cell Calibration Component Parameters" are special conventions of transformation parameters. The Values tra x, tra y, tra z, -rot x, -rot y, -rot z are copied to the Windows clipboard. For the result it is important in which direction the data is transformed. If Robot Data (ABC Angles or Quaternion's) is used, this data can only be imported as OCS = Target Data, but often the Robot Data is the Start System and any other Data the Target System.

So if the convention is to transform vice versa, you can get this results into the clipboard by checking the checkbox "give inverted Parameters to Clipboard" and the inverse Transformation Parameters are copied. (Regarding inverse Parameters see 5.5 - Inverse Transformation Parameters)

7 The Main Sheet

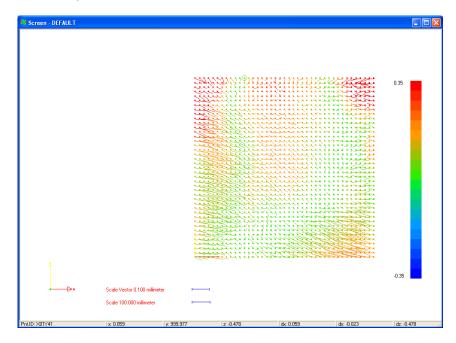
The Main Sheet shows all Data in the <u>OCS Coordinate System</u>! If no transformation has yet been calculated the values for all MCS Points are 0!

In the first rows the identically points are shown (Green Point ID Field). Next the Points which are only in the MCS File are shown (yellow Point ID Field). Then the Points which are only in the OCS File are shown (orange Point ID Filed).

After done transformation all Points are shown in the OCS coordinate system. The points which are only in the MCS (=Start) File so will be subsequent transformed with the parameters calculated based on the identically points.

Parts of the table can be highlighted and copied to the windows clipboard or can be shown in a 2D Diagram by right mouse click on the area.

7.1 Rectangular, cylindrical and spherical coordinate systems


Coordinates are always imported as rectangular coordinates (x, y, z). The calculation to cylindrical or spherical coordinates is always done in TrafoStar. It is every time based on the z Axis of the rectangular system as the reference axis between both system definitions. So for axample on the cylindrical system z equals H.

8 The Graphics Window - Screen

The Graphics Window is opened and closed by the Menu Graphics – Graphics Window.

You can open more than one Graphics Window, but only one of this is the default window, this is written in the top frame of the Graphics Window.

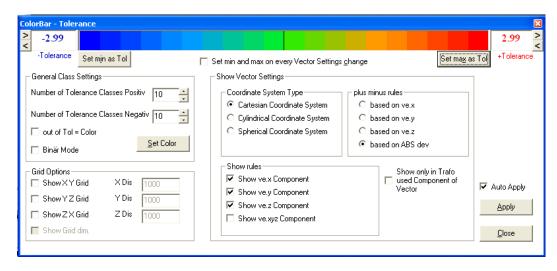
8.1 Print "Screen-DEFAULT" to Clipboard - CTRL + D

The content of the Graphics Window is copied to the clipboard with the menu Graphics - Print "Screen-DEFAULT" to Clipboard or with the shortcut "Ctrl + D".

8.2 More Settings with the menu Graphics

The data representation can be manipulated with:

Right mouse button Left mouse button and Ctrl + left mouse button Shift + left mouse button Shift + left mouse button Mouse Wheel	n	zooms out sector zoom translate rotate rotate around the axis perpendicular to your screen zooms in and out
Ctrl + c	centre the graphics	
Ctrl + a	zoom to all	
Ctrl + s	side view	
Ctrl + t	top view	
Ctrl + f	front view	
Ctrl + u	set point of rotation	
Key left	translate left	
Key right	translate right	
Key up translate up		
Key down	translate down	



Shift + Key left Shift + Key right Shift + Key up Shift + Key down Shift + L Shift + R	positive rotation around left – right axis of screen negative rotation around left – right axis of screen positive rotation around bottom – top axis of screen negative rotation around bottom – top axis of screen positive rotation around axis perpendicular to screen negative rotation around axis perpendicular to screen
F5 F6	Flags Mode: Mode to set flags by clicking a point on the screen dynamic Flag: Show Flag for closed point to mouse cursor, hit F6 again and Flag
F7 F8	stays Black Plane Dialog Line Mode, draw lines between points
Ctrl + v Ctrl + y	show deviation <u>v</u> ectors Anal <u>v</u> se-Mode (Points move along their deviation vectors)
Ctrl + L	make vectors longer (alternative F3 in Analyze Mode)
Ctrl + h	make vectors shorter (alternative F4 in Analyze Mode)
Ctrl + k	keep points – In Analyze Mode the moved Point stays on the screen
Ctrl + b Ctrl + m Ctrl + p	show points bigger (<u>b</u> ig) show pints smaller (s <u>m</u> all) Show Points just as one Pixel
Ctrl + r	Show tolerance bar
ColorBar - Tolerance	

Ctrl + e

Show details of Tolerance Bar settings (can also be done by a double click onto the color bar in the ColorBar window)

8.3 ColorBar

With the ColorBar the visualization of the Colors and Deviations are controlled. The Deviation Vectors can be shown as components of rectangular, cylindrical or spherical coordinate systems. This is chosen in the "Coordinate System Type". With a change of this option the Text of the Checkboxes in "Show rules" and in "plus minus rules" changes also.

All Settings which are made in the ColorBar are stored within a saved View.

The following pictures show the settings in the ColorBar with a chosen cylindrical Coordinate system type.

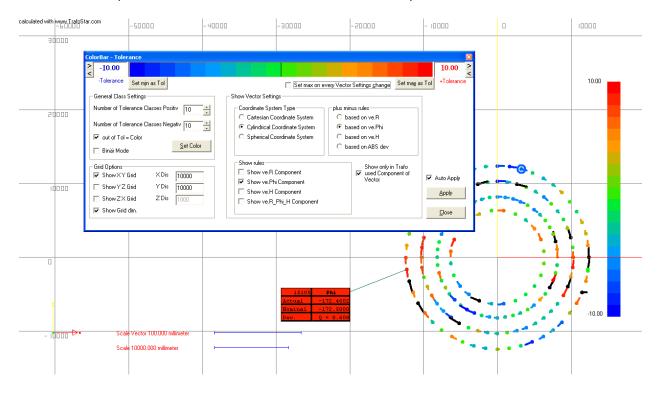
😏 Screen - DEFAULT	
Color B ar - Tolerance	
≥ -10.00 < Tolerance Set min as Tol	10.00 ≥ Set may on every Vector Settings phange Set mag as Tal
General Class Settings Number of Tolerance Classes Positiv Number of Tolerance Classes Negativ Vumber of Tolerance Classes Negativ	10
lage years (10) See 1000.002	
Pnt.ID: 11505 x: 7546.992	v 9830 596 z 6012 656 dx -5 228 dx -11 614 dz 1 456 index 28

With the "Show rules" any component could be switched on and off.

It is a special issue the 3D deviation vectors do not have an algebraic sign and is always positive (because it IS a 3D deviation!). So once you show all 3D Deviations on the screen they would only use the positive side of the color bar. It would give a more transparent and clear view by using also the negative colors for the vectors. So it is possible to define the color of a deviation vector by the "plus minus rules". For example if you only look at the transverse deviations (Phi component) it could make sense to switch the "plus minus rules" to "based on ve.Phi".

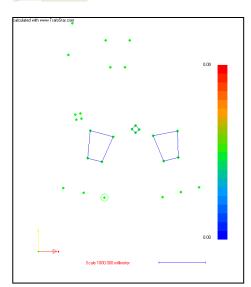
The Option "based on ABS dev" uses only the positive side of the color bar.

You can show one, two or three components of the deviation vector and you can choose based on which component the color bar is used. So the color is linked to the algebraic sign of only ONE component. However, you decide on your own, what makes sense and what not!


The Option "Show only in Trafo used Component of Vector" does only show the deviation vectors which components have been used in the transformation.

"Show ve.xyz Component" turns ON all three components of each vector.

The Check Button "Set min and max on every Vector Settings change" sets the plus and minus tolerance to the maximum positive value if any change is made in the ColorBar settings. If for example only the Phi components are shown the max and min value will become to the max Value of the Phi component automatically.



With the "Grid Options" a coordinate Grid can be shown and manipulated.

8.4 Lines

144

With the Menu "Graphics – Lines – Line Mode Active" or with the Icon or by $\langle F8 \rangle$ the line mode is turned on. In this mode lines as connection between points can be added to the graphics (only MCS Points can be used).

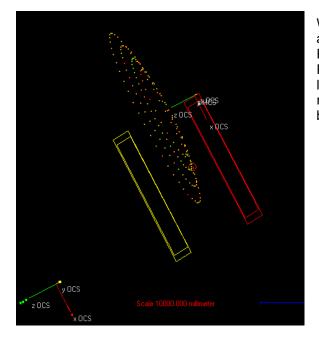
Do draw a line set Line mode active, chose "Set line" and click next to a point. On every click close to a point a new line will be drawn and a polygon is added to screen. A double click stops the actual drawing; you can start a new polygon by clicking to another point.

With "Delete Line" drawn lines can be deleted.

www

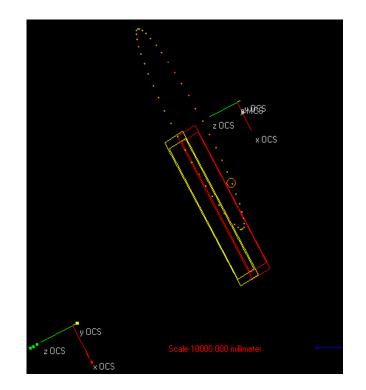
If you turn off the Line Mode no lines will be shown any more. Once you turn line mode on, the lines will be shown again.

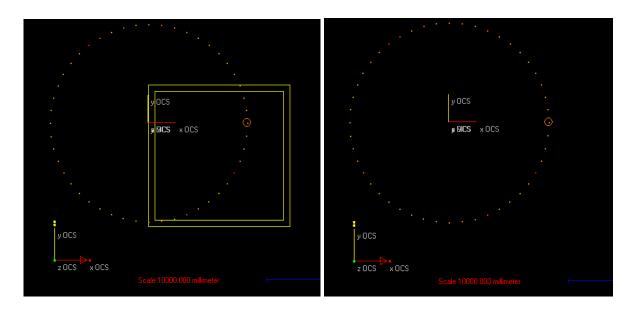
8.5 Black Plane


BlackPlane	X
BlackPlane Settings	
🔲 Activate BlackPlane	Initialize Planes
F Show Black Planes Bo	orders in Screen
	b" and hold left Mouse Button down t" and hold left Mouse button down
Cancel	<u>A</u> pply

The function "Black Plane" allows to control the visibility of points by two parallel and virtual planes; called the black Planes. All Points between these planes stay visible, all other points become invisible.

You can open the Dialog by F7 or with the Menu "Graphics - Black Plane". Once you click "Activate Black Plane" two planes parallel to the actual graphics view are initialized. These planes are shown when you click "Show Black Planes Borders in Screen". Hit Apply or OK to make changes active. The Planes are shown in the centre of the graphics window. If you translate or rotate the graphics view the planes move with the view, so these planes are defined in the same coordinate system as the points.


With pressing "t" and mouse movement the distance between the two planes (t = thickness) changes.


After finishing the movements of the planes the graphics can be used as known. Within the black plane dialog the two planes can be set invisible (checkbox "Show Black Planes Borders in Screen"), but it stays active!

Also the planes can be initialized again by clicking "Initialize Planes".

With pressing "b" and mouse movement both planes are moved parallel to them selves (b = Basis). All Points outside the two planes are invisible and all Points between the two planes are shown. So with logical initialisation of the planes (graphics view / rotation must make sense) the visibility of points can be controlled.

8.6 Menü Global Graphics

The Menu "Global Graphics - General Graphics Settings" gives access to the Dialog "Graphics Options". Here general settings fort he graphics window can be made. These Settings are NOT stored with a saved view. But these settings are stored into the TrafoStar.ini File, so they stay unchanged by the next start of TrafoStar.

The visibility of point Groups (OCS, MCS, only OCS, only MCS; "only" means the Point is not an identically point and is only existing in MCS or OCS) is controlled by the Settings in "Visible Points in Graphics".

The chapter "...more Settings..." has some different possibilities:

- Show closer Points bigger" draws the points, which are "closer" to the user bigger, this gives a better 3D View; closer means the direction perpendicular to the screen
- Show ColorBar in Graphics Window" switches the color bar in the Graphics on and off
- Show Vectors as thick as Points" shows the deviation Vectors in the same thickness than the points
- Show Quaternion Vector" switches the Quaternion Vector in the Graphics on and off
- Show R Dist Vectors and REAL dx," shows in case of a transformation with a R_Dist Parameter (constant distance between identical points) the total Vector (including the Distance) between the identical Points. So you can analyze in which direction the vector is pointing

Graphics Options	
Visible Points in Graphics	
View all OCS Identically Points	
View all MCS Identically Points	
✓ View all only OCS Points	
✓ View all only MCS Points	
more Settings	
🕞 Show closer Points bigger	
🔽 Show ColorBar in Graphics Window	
Show Vectors as thick as Points	
Show Quaternion Vector	
Show R Dist Vectors and REAL dx, dy and dz between MCS and OCS; CALCULATE your Transformation to see effect in Graphics	
Labels	
Show CoordinateSystem Labels Label Font	
Show Point Names on visible Points	
Deviation Vector Direction	
Solution = actual - nominal	
C based on correction = nominal - actual	
Style of Points	
🖵 square	
🔽 circle	
T Auto Apply Cancel Apply	

9 Save graphical Views

You can save views of the Graphics screen with the Icon Bar or the Menu Views. Once the views are saved you can recall them with the drop down box or with the Menu.

After the click on the Icon "Save View" a Dialog appears. Here you can enter a name for the view to save.

🕼 Save View	
Save View New View Name Existing Views Points Test View Max Dev With Flags and only Phi	<u>□</u> K <u>□</u> ancel

A saved View is recalled (and will be shown in the DEFAULT Graphics Window) by selecting an item from the drop down box.

"Ctrl + z" and "Ctrl + y" is kind of a undo function for the graphics screen (also use the corresponding lcons)

10 Flags

By clicking the Icon

or entering the Menu "Graphics – Flags Mode" the Flags Mode is active and Flags can be set by clicking next to a point (also use F5). An active Flags Mode is visualized by a different mouse cursor over the graphics screen:

By clicking a point in the graphics window a flag is set close to the point. The flag contains a table with the point's data. By double click on this flag you can edit the flags table and do some settings on the flags.

😑 Scr	een - DEFAULT						
3	-30000	- 20000	- 10000		10000	20000	30000
	🚽 Edit Flag				3		
	Show Flag Informations		Flag Properties				
	Actuals	\checkmark	🔽 set Tolerance Col	our		20.00	
	Nominals		🔽 Show Grid				
	✓ dev □ Use / not use	□ Z = H □ 3D dev					
		□ B					
	Legend xyz	🗖 Phi			3		
_	Legend Name	🗌 Rho	Eonts		+		
	Show only Point N	umber 🥅 Theta					
	use on Flags		General Flag Settings				
	🔲 change all Flags to r	-	🔲 Snap to invisible G	rid			
	put Flag on all visible place close to		Grid Length for Snap	100			
	 place close (c place radial, L 		🔲 🗔 Show Elag only if E	Point is visible on Screen	test	x y	
	place on Screet	-			Actual Nominal	12299.750 -1619 12299.750 -1619	
	next to Borde	Option			Dev.		0.000
	Delete Flag	elete All	Cano	el OK			
	<u></u>	elece All				-20.00	
	-24000		neter H				
Pnt.ID:	18305	x: 7545.321	y: -9839.875	z: 6005.483	dx: -6.899	dy: 2.3	25 //

If you save a view all flags are stored with the view.

The option "Snap to invisible Grid" puts the flags exactly on a invisible Grid, which is visible once you drag the flag. The Grid length can be defined by the user.

If you choose "change all Flags to new settings" all already set flags are set to the actual in the Edit Flag window made settings.

The option "put Flag on all visible Points" sets to all visible points in screen a flag with the actual settings.

11 Menu Extras – Options

In this Menu the storage of results in the windows clipboard is controlled. (The storage is done every time the button "Calculate" in the transformation calculation dialog is hit). See Chapter 6 - Usage of Windows Clipboard.

pti	ons
C	Clipboard Settings Monte Carlo Settings more Settings
	Auto Clipboard Settings
	• Do not copy anything to clipboard
	C Complete results to clipboard after each calculation
C Bobot measurement protocol results after each calculation	
	C BMW Cell Calibration Component Parameters
	Main Sheet Clipboard Settings
	Copy Tabel heading with data
	Cancel OK

"Do not copy anything to clipboard" - no Data is copied to the Clipboard

"Complete results to clipboard after each calculation"

"Robot measurement protocol results after each calculation" – not yet released

"BMW Cell Calibration Component Parameters" - The parameters Translation x, y and z and the rotation x, y and z (rotations with inverse algebraic sign) are copied to the clipboard

12 More functions

12.1 Export of RobCad *.rf Files (See also 5.3 - Robot Base measurements)

The Menu "File - Export - RobCad *.rf" File exports the transformation results (the Parameter Translation x, y und z and Rotation around x, y and z) into a *.rf File.

This function is often used to tell RobCad the relationship between a fixture and a robot.

Therefore you must have a Number of n identically Points in booth coordinate systems (The Robot and the fixture system, often the fixture represents the object coordinate system, like a car, plane, etc.). To get these points, the robot drives into n positions and its end effectors 3D Position is measured by a 3D measurement System in the fixtures coordinate system.

ATTENTION:

In MCS (Start System) the coordinates of the Robot (Base System) are defined In OCS (Target System) the coordinates of the fixture / Object / Car are defined

With the Export a *.rf File is created. The parameters Place, Fixture and Robot must be entered and these will be stored in the File also.

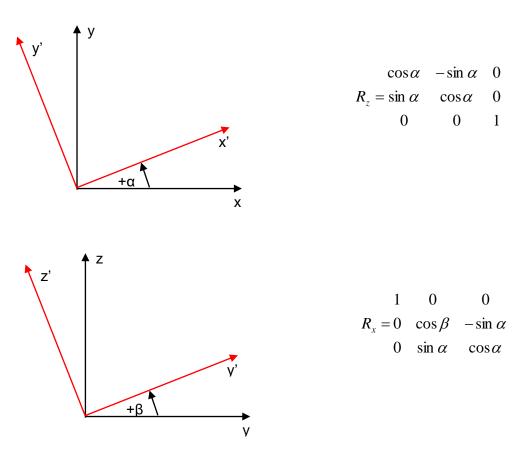
In the rf File the 3 Translations and the Rotations (z, y' and x") in the order x", y' and z are stored (also the algebraic sign of the rotations is flipped).

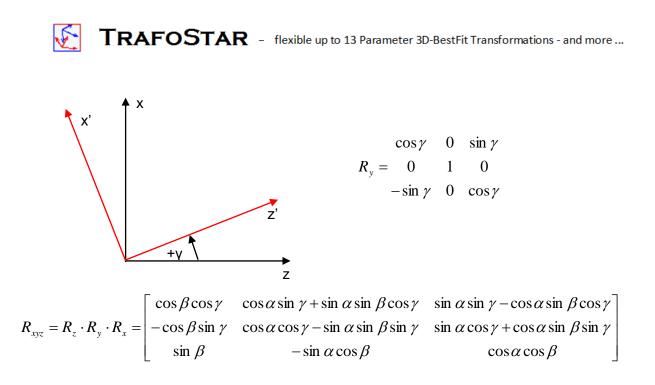
13 Basics of overdetermined 3D Transformations

The 3D Transformation between MCS (= Start) and OCS (= Target) is calculated with the equation:

OCS = TRA + Rot_Matrix * Affine_Matrix * Scale_Matrix * MCS

Here in is:


OCS	Object Coordinate System = Target System
TRA	Vector of Translation
Rot_Matrix	Rotation-matrix (calculated from the three rotations around x, y' and z"; so this are the
	rotations around the already rotated axes, this is defined by the ' and ")
Affine_Matrix	Matrix of affine Parameter
Scale_Matrix	Matrix of the scales
MCS	Measurement Coordinate System = Start System


The equation shows in detail the way the parameters are defined and how the coordinates from the MCS = Start System are transformed to the Target = OCS System

Important is the place of the Translation. In this equation the Translation is done AFTER the Rotation, that means the resulting translation values are defined in the TARGET = OCS Coordinate system.

The algebraic sign of the rotation is based on the rules of positive rotation in mathematics (for example a Rotation around z is positive if the x Axis is turned to the y Axis on the shortest way).

13.1 Rotation Matrix

13.2 Scale Matrix

The Scale Matrix has the following structure:

$$Scale = \begin{bmatrix} sx & 0 & 0 \\ 0 & sy & 0 \\ 0 & 0 & sz \end{bmatrix}$$

13.3 Affine Matrix

The affine parameters are used to define a non rectangular coordinate system.

xyDeviationfrom 90 degrees between the positive x and y AxisAzimuth zAzimuth of the z Axis (projected into the xy plane); reference for the angle azimuth = 0 is
the positive x axis

z to xy Deviation from 90 degrees between the z Axis and the xy plane

The Affine Matrix has the following structure (with xy = Angle between x and y Axis, ztoxy = Angle from z Axis to xy plane and Az = Azimuth of z Axis projected to xy plane).

$$Affin = \begin{bmatrix} 1 & \sin(xy) & \sin(ztoxy) & \cos(Az) \\ 0 & \cos(xy) & \sin(ztoxy) & \sin(Az) \\ 0 & 0 & \cos(ztoxy) \end{bmatrix}$$

13.4 R Dist Value

The "R_Dist" parameter is available since Version 1.3.69. It defines a constant distance in 3D Space (only the distance itself is constant, not the vector of this distance) between the identical points. To calculate the 3D BestFit with this parameter every Distance in Space gets a correction (and this one is minimized during the least square adjustment). Finally this correction is separated into its x, y and z component and shown in TrafoStar.

The equation fort he R_Dist Value is the following:

 $R_{Dist} + v = SQR (OCSx - MCSx)^{2} + (OCSy - MCSy)^{2} + (OCSz - MCSz)^{2}$

With OCS = TRA + Rot_Matrix * Affine_Matrix * Scale_Matrix * MCS

ATTENTION: The subsequent Transformation of Points is done <u>WITHOUT</u> the R_Dist Value, it doesn't matter if it was calculated during the BestFit Transformation. The reason is the forward Transformation is not defined with the R_Dist value (Because of the unknown vector of the R_Dist).

Practical Examples fort the usages of R_Dist Transformations are:

- Measurement of Robot Bases if the TCP of the Robot is not known and the measured Point is eccentric mounted to the TCP (see 5.3 - Robot Base measurements)

Connection of Coordinate Systems without having the line of sight between identically Points; if it is possible to set artefacts (like Scale bars) between the points, the length of the artefacts is the R_Dist Value. If this value is known it can be calculated with the "R Data is known" option, net yet released)
 Analysis of measured data with regards to Offsets or additional constants (R0 Values)

- Analysis of measured data with regards to Onsets of additional constants (RO

14 Versions

Version 2.0.36; Jan 30th, 2014

- Etta Value in ini File gives access to quicker iterations; can help on files with large numbers; be carefully with changing this value!
- Clipboard Export Option (Menue Extras Options) copies X, Y, Z, A, B, C to clipboard (X = Trala x, Y = Trala y, Z = Trala z, A = -rot z, B = rot y, C = rot x)

Version 2.0.37; Feb 09th, 2014

- Change of Units has direct effect to Window "Transformation Calculation"
- Added info about used Units in Window "Transformation Calculation"
- Complete new code for Paraboloid Fit, better and more stable iteration, more stable results
- Added Units to clipboard option "Complete results to clipboard after each calculation"
- Changed behaviour of "use Parameter" Checkboxes in Window "Transformation Calculation"; the last calculated parameter value will remain in the Textbox once Checkbox is unchecked; click checkbox again and Parameter is "float", click it again and Parameter is "0"

Version 2.0.38; Feb 23rd, 2014

- New MonteCarlo Functionality, enter Standard Deviations of your MCS Coordinates and get the Standard Deviations of your calculated Transformation Parameters done by a Monte Carlo calculation

Version 2.0.39; March 01st 2014

- Window Transformation Calculation can be copied into Windows Clipboard by clicking new button "copy to clipboard"

- Value "sigma xyz" is also in clipboard after calculation when Menu "Extras Options"; Tab "Clipboard Settings" "Complete Results to clipboard after each calculation" is set.
- New Option for visibility of Points; Menu "Global Graphics" "General Graphics Settings" Checkbox "don't View Points which are out of Tol."; if this Box is checked no out of Tolerance Point is shown in the graphics Window (Tolerance can be set here: "Graphics" – "Tolerance" – "Color Bar"

Version 2.0.40; May 13th 2014

- fixed bug when using FileBrowse Button in BatchTransform
- fixed bug when using Explore Button in BatchTransform in Windows 7 Operating System

Version 2.0.41, May 27th 2014

- fixed bug in Graphics Window when showing the OCS Points and MCS Points (Menu General Graphics Settings)

Version 2.0.42, Sept. 20th 2014

- added the option for the R_Dist calculation to use Robots ABC Angle which could be imported by *.dat File (Kuka Format); see chapter 5.3.3.

Version 2.0.47, April, 7th 2015 (2.0.43 to 2.0.46 are internal releases)

- added calculation of inverse Transformation Parameters
- added some more detailed information to pdf Manual regarding scale and affine parameters
- added new Rotation sequence in Form Details
- usage of Quaternion's possible for R-Dist calculation, added a new simple Format for import
- done some finale things and issues on saving ABC Angels and Quaternion's to *.tfo Files
- added new functionality on Auto Find Points for Importing Points without identical Names (rename OCS or MCS Point Names based on the corresponding Name)

Version 2.0.48, April 24th 2015

- fixed bug with ini Files when installing TrafoStar on new computer

Version 2.0.49, April 3rd 2016

- new Unit FEET available in Dialog UNITS
- COMMA "," is allowed as separator in Input files (only if Computer Settings for Decimal delimiter are POINT ".".

Version 2.0.50, May 26th 2016

- fixed major bug in Transformation which was causing crash on some computers

Version 2.0.51, August 29th 2016

- fixed a bug which occurred while i importing data on systems with comma as decimal delimiter

Version 2.0.52, January 24th 2017

- added the Rotation sequence z y' z" to the Details Dialog within the Transformations Calculation Dialog

Version 2.0.53, April 02nd 2017

- fixed little Bug while using Special Macro for Transforming couple of PointSets given in Microsoft Excel

Version 2.0.54, June 28th 2017

- fixed Issue with possibility to use Option "use ABC" in Free TestMode

Version 2.0.55, May 30th 2018

- changed some small design thinks, like order of text, size of boxes
- improved some issues with Gimbal Lock Things
- added Unit 360°60'60" (a Degree ° has 60 Minutes ' and a Minute has 60 Secondes "), with the possibility to define the digits for the seconds
- added the possibility to define the digits of a scale (6 or 12 digits)

Version 2.0.56, Oct 18th 2018

- improved the finding of identical Points by coordinate comparison

Version 2.0.57, Jan 26th 2019

- massive improvement the Algorithm for "Calculating Robot Base with R-Vector using ABC Angle Information of Robot"
- Changed behaviour of Checkboxes for R-Option

Version 2.0.58, June 29th 2019

- Fixed Issue with opening old *.tfo Jobs

Version 2.0.59, May 21st 2022

- added Fanuc Robot ASCII Files (*.fs) containing xyz and WPR as possibility for input as OCS
- added Robot File with (Ptnr. x y z A B C) as possibility for input as OCS
- changed behaviour of defining the OCS File format

Version 2.0.60 - internal Version

Version 2.0.61, Oct 12th 2023

- fixed little issue while importing FANUC Data
- added Extras-Options => Checkbox "add TCP xyz to Kuka Parameter" because of a special customer's request.d

15 Contact

Contact TrafoStar: info@TrafoStar.com www.TrafoStar.com